JAMP  Vol.4 No.9 , September 2016
Planar Retro-Reflector for Grazing Incident Beam of High-Energy X-Ray Photons
Abstract: The grazing-incidence hard X-ray retro-reflector (GIRR) is a novel optical element, which completely suppresses the conventional mirror beam in the retro-reflection mode, and, at the same time, totally reflects the primary grazing incident X-radiation backwards to its source in strictly anti-parallel direction with minimal scattering. The GIRR is a good alternative to hard X-ray normal-incidence Bragg mirror, and has a high potential for applications in various X-ray optical devices and techniques, such as, hard X-ray optical noise (or background) filters, high-quality hard X-ray waveguides, low-gain hard X-ray free electron laser resonators (XFELRs), X-ray holography, coherent X-ray diffraction imaging, phase-contrast imaging, as well as in hard X-ray optical data storage devices and deep space hard X-ray communications. The proposed optical element consists of single-crystal wafer covered by a thin, non-diffracting layer of low-absorbing material.
Cite this paper: Bezirganyan, H. , Bezirganyan, R. , Bezirganyan, S. (2016) Planar Retro-Reflector for Grazing Incident Beam of High-Energy X-Ray Photons. Journal of Applied Mathematics and Physics, 4, 1731-1755. doi: 10.4236/jamp.2016.49181.

[1]   Akiyama, T., Yoshida, N., Kawahata, K., Tokitani, M., Iwakiri, H., Okajima, S. and Nakayama, K. (2012) Studies of Reflectivity Degradation of Retroreflectors in LHD and Mitigation of Impurity Deposition Using Shaped Diagnostic Ducts and Protective Windows. Nuclear Fusion, 52, Article ID: 063014.

[2]   Schultz, P., Cumby, B. and Heikenfeld, J. (2012) Investigation of Five Types of Switchable Retroreflector Films for Enhanced Visible and Infrared Conspicuity Applications. Applied Optics, 51, 3744-3754.

[3]   Ooi, C.H.R. (2010) Superintense Laser Fields from Multiple Laser Pulses Retro-Reflected in Circular Geometry. Journal of Applied Physics, 107, Article ID: 043110.

[4]   Groswasser, D., Waxman, A., Givon, M., Aviv, G., Japha, Y., Keil, M. and Folman, R. (2009) Retroreflecting Polarization Spectroscopy Enabling Miniaturization. Review of Scientific Instruments, 80, Article ID: 093103.

[5]   Dell’Agnello, S., Delle Monache, G., Vittori, R., Boni, A., Cantone, C., Ciocci, E., Martini, M., Patrizi, G., Tibuzzi, M., Bianco, G., Currie, D., Intaglietta, N., Salvatori, L., Lops, C., Contessa, S., Porcelli, L., Mondaini, C., Tuscano, P. and Maiello, M. (2015) Advanced Laser Retroreflectors for Astrophysics and Space Science. Journal of Applied Mathematics and Physics, 3, 218-227.

[6]   Hemmati, H., Ed. (2006) Deep Space Optical Communications. JPL Deep Space Communications and Navigation Series. John Wiley & Sons Inc., Hoboken.

[7]   Arnon, S., Barry, J., Karagiannidis, G., Schober, R. and Uysaleds, M., Eds. (2012) Advanced Optical Wireless Communication Systems. Cambridge University Press, Cambridge.

[8]   Ghassemlooy, Z., Popoola, W.P. and Rajbhandari, S. (2013) Optical Wireless Communications: System and Channel Modelling with Matlab. CRC Press, Boca Raton.

[9]   Arnon, S. (Ed.) (2015) Visible Light Communication. Cambridge University Press, Cambridge.

[10]   James, R.W. (1967) The Optical Principles of the Diffraction of X-Rays. Cornel University Press, Ithaca.

[11]   Azaroff, L.V., Kap-low, R., Kato, N., Weiss, R.J., Wilson, A.J.C. and Young, R.A. (1974) X-Ray Diffraction. In: Farnsworth, J.L. and Bradley, J.W., Eds., International Series in Pure and Applied Physics, McGraw-Hill Pub. Co., New York, 664 p.

[12]   Pinsker, Z.G. (1978) Dynamical Scattering of X-Rays in Crystals. Springer-Verlag, Berlin.

[13]   Authier, A. (2001) Dynamical Theory of X-Ray Diffraction. Oxford University Press, Oxford.

[14]   Kohra, K. and Matsushita, T. (1972) Some Characteristics of Dynamical Diffraction at a Bragg Angle of about π/2. Zeitschrift für Naturforschung, 27, 484-487.

[15]   Brümmer, O., Höche, H.R. and Nieber, J. (1979) X-Ray Diffraction in the Bragg Case at Bragg Angles of about π/2. Physica Status Solidi (A), 53, 565-570.

[16]   Graeff, W. and Materlik, G. (1982) Millielectron Volt Energy Resolution in Bragg Backscattering. Nuclear Instruments and Methods in Physics Research, 195, 97-103.

[17]   Caticha, A. and Caticha-Ellis, S. (1982) Dynamical Theory of X-Ray Diffraction at Bragg Angles Near π/2. Physical Review B, 25, 971-983.

[18]   Sutter, J.P., Alp, E.E., Hu, M.Y., Lee, P.L., Sinn, H., Sturhahn, W. and Toellner, T.S. (2001) Multiple-Beam X-Ray Diffraction Near Exact Backscattering in Silicon. Physical Review B, 63, Article ID: 094111.

[19]   Caticha, A., Aliberti, K. and Caticha-Ellis, S. (1996) A Fabry-Perot Interferometer for Sub-meV X-Ray Energy Resolution. Review of Scientific Instruments, 67, 3380-3381.

[20]   Liss, K.-D., Hock, R., Gomm, M., Waibel, B., Magerl, A., Krisch, M. and Tucoulou, R. (2001) X-Ray Photon Storage in a Crystal Cavity. In: Mills, D.M., Schulte-Schrepping, H. and Arthur, J.R., Eds., X-Ray FEL Optics and Instrumentation, SPIE Press, Bellingham, 78-88.

[21]   Chang, S.-L., Stetsko, Y.P., Tang, M.-T., Lee, Y.-R., Sun, W.-H., Yabashi, M. and Ishikawa, T. (2005) X-Ray Resonance in Crystal Cavities: Realization of Fabry-Perot Resonator for Hard X-Rays. Physical Review Letters, 94, Article ID: 174801.

[22]   Chang, S.-L., Stetsko, Y.P., Tang, M.-T., Lee, Y.-R., Sun, W.-H., Yabashi, M., Ishikawa, T., Wu, H.-H., Shew, B.-Y., Lin, Y.-H., Kuo, T.-T., Tamasaku, K., Miwa, D., Chen, S.-Y., Chang, Y.-Y. and Shy, J.-T. (2006) Crystal Cavity Resonance for Hard X Rays: A Diffraction Experiment. Physical Review B, 74, Article ID: 134111.

[23]   Wu, Y.-H., Tsai, Y.-W., Chu, C.-H., Liu, W.-C., Chang, Y.-Y. and Chang, S.-L. (2015) Inclined-Incidence Hard-X-Ray Resonator with Ultrahigh Efficiency and Resolution. Optics Express, 23, 9994-10001.

[24]   Tsai, Y.-W., Wu, Y.-H., Chang, Y.-Y., Liu, W.-C., Liu, H.-L., Chu, C.-H., Chen, P.-C., Lin, P.-T., Fu, C.-C. and Chang, S.-L. (2016) Sapphire Hard X-Ray Fabry-Perot Resonators for Synchrotron Experiments. Journal of Synchrotron Radia-tion, 23, 658-664.

[25]   Caticha, A. and Cati-cha-Ellis, S. (1990) A Fabry-Perot Interferometer for Hard X-Rays. Physica Status Solidi (A), 119, 643-654.

[26]   Huang, X.R., Siddons, D.P., Ma-crander, A.T., Peng, R.W. and Wu, X.S. (2012) Multicavity X-Ray Fabry-Perot Resonance with Ultrahigh Resolution and Contrast. Physical Review Letters, 108, Article ID: 224801.

[27]   Bergamin, A., Cavagnero, G., Mana, G. and Zosi, G. (1999) Scanning X-Ray Interferometry and the Silicon Lattice Parameter: Towards Relative Uncertainty? European Physical Journal B, 9, 225-232.

[28]   Ferroglio, L., Mana, G. and Massa, E. (2008) Si Lattice Parameter Measurement by Centimeter X-Ray Interferometry. Optics Express, 16, 16877-16888.

[29]   Massa, E., Mana, G., Kuetgens, U. and Ferroglio, L. (2011) Measurement of the {2 2 0} Lattice-Plane Spacing of a 28Si X-Ray Interferometer. Metrologia, 48, S37-S43.

[30]   Bezirganyan, H.P. and Bezirganyan, P.H. (1988) Solution of the Two-Dimensional Stationary Schrödinger Equation with Cosine-Like Coefficient (In View of X-Ray Diffraction). Physica Status Solidi (A), 105, 345-355.

[31]   Bezirganyan, H.P. (1988) X-Ray Reflection from and Transmission through a Plane-Parallel Dielectric Plate with Cosine-Like Polarizability (Symmetrical Laue Case). Physica Status Solidi (A), 109, 101-110.

[32]   Bezirganyan, H.P., Bezirganyan Jr., H.H., Bezirganyan, S.E. and Bezirganyan Jr., P.H. (2004) Specular Beam Suppression and Enhancement Phenomena in the Case of Grazing-Angle Incidence X-Rays Back Diffraction by the Crystal with Stacking Fault. Optics Communications, 238, 13-28.

[33]   Bezirganyan, H.P., Bezirganyan Jr., H.H., Bezirganyan, S.E., Bezirganyan Jr., P.H. and Mossikyan, Y.G. (2005) An Ultrahigh-Density Digital Data Readout Method Based on Grazing-Angle Incidence X-Ray Backscattering Diffraction. Journal of Optics A: Pure and Applied Optics, 7, 604-612.

[34]   Yu, X. and Fan, S. (2004) Anomalous reflections at photonic crystal surfaces. Phys. Rev. E, 70, Article ID: 055601.

[35]   Floquet, G. (1883) Sur les équations différentielles linéaires à coefficients périodiques. Annales Scientifiques de l’école Normale Supérieure,12, 47-88.

[36]   Bloch, F. (1928) über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift für Physik, 52, 555-600.

[37]   Mathieu, E. (1868) Memoire sur le Mouvement Vibratoire d’une Membrane de Forme Elliptique. Journal de Mathématiques Pures et Appliquées, 13, 137-203.

[38]   McLachlan, N.W. (1947) Theory and Application of Mathieu Functions. Oxford University Press, London.

[39]   Meixner, J., Schaefke, F.W. and Wolf, G. (1980) Mathieu Functions and Spheroidal Functions and Their Mathematical Foundations. Springer, Berlin.

[40]   Shiraishi, Y., Takano, K., Matsubara, J., Iida, T., Takase, N., Machida, N., Kuramoto, M. and Yamagishi, H. (2001) Growth of Silicon Crystal with a Diameter of 400 mm and Weight of 400 kg. Journal of Crystal Growth, 229, 17-21.

[41]   Yamagishi, H., Kuramoto, M., Shiraishi, Y., Machida, N., Takano, K., Takase, N., Iida, T., Matsubara, J., Minami, H., Imai, M. and Takada, K. (1999) Large Diameter Silicon Technology and Epitaxy. Microelectronic Engineering, 45, 101-111.

[42]   Claeys, C. and Simoen, E. (2009) Extended Defects in Germanium: Fundamental and Technological Aspects. Springer, Berlin, Heidelberg.

[43]   Tanner, B.K., Wittge, J., Vagovic, P., Baumbach, T., Allen, D., McNally, P.J., Bytheway, R., Jacques, D., Fossati, M.C., Bowen, D.K., Garagorri, J., Elizalde, M.R. and Danilewsky, A.N. (2013) X-Ray Diffraction Imaging for Predictive Metrology of Crack Propagation in 450-mm Diameter Silicon Wafers. Powder Diffraction, 28, 95-99.

[44]   Van Hemmen, J.L., Heil, S.B.S., Klootwijk, J.H., Roozeboom, F., Hodson, C.J., van de Sanden, M.C.M. and Kessels, W.M.M. (2007) Plasma and Thermal ALD of Al2O3 in a Commercial 200 mm ALD Reactor. Journal of the Electrochemical Society, 154, G165-G169.

[45]   Lu, Z., et al. (2013) Effects of High Temperature Rapid Thermal Annealing on Ge Films Grown on Si(001) Substrate. Chinese Physics B, 22, Article ID: 116804.

[46]   Walsh, K.A. (2009) Beryllium Chemistry and Processing. ASM International, USA, 183.

[47]   JTEC Corporation. Development and Production of Optical Mirrors for Synchrotron Radiation. Japan.

[48]   The X-Ray Mirrors That Differ by One Atom in Flatness from End to End. SLAC National Accelerator Laboratory News.

[49]   Szwacki, N.G. and Szwacka, T. (2015) Basic Elements of Crystallo-graphy. Pan Stanford Publishing Pte. Ltd., Singapore.

[50]   Martienssen, W. and Warlimont, H., Eds. (2005) Springer Handbook of Condensed Matter and Materials Data. Springer, Berlin.

[51]   Kohn, V.G. (2006) Program for Calculating the Scattering Parameters Used in the X-Ray Standing Wave Method. Crystallography Reports, 51, 936-940.

[52]   Omote, K. (2010) High Resolution Grazing-Incidence In-Plane X-Ray Diffraction for Measuring the Strain of a Si Thin Layer. Journal of Physics: Condensed Matter, 22, Article ID: 474004.

[53]   Yabashi, M., Tamasaku, K., Kikuta, S. and Ishikawa, T. (2001) X-Ray Monochromator with an Energy Resolution of 8 × 10?9 at 14.41 keV. Review of Scientific Instruments, 72, 4080-4083.