Back
 IJMNTA  Vol.5 No.3 , September 2016
Chaos in a Fractional-Order Single-Machine Infinite-Bus Power System and Its Adaptive Backstepping Control
Abstract: This paper has numerically studied the dynamical behaviors of a fractional-order single-machine infinite-bus (FOSMIB) power system. Periodic motions, period- doubling bifurcations and chaotic attractors are observed in the FOSMIB power system. The existence of chaotic behavior is affirmed by the positive largest Lyapunov exponent (LLE). Based on the fractional-order backstepping method, an adaptive controller is proposed to suppress chaos in the FOSMIB power system. Numerical simulation results demonstrate the validity of the proposed controller.
Cite this paper: Liang, Z. and Gao, J. (2016) Chaos in a Fractional-Order Single-Machine Infinite-Bus Power System and Its Adaptive Backstepping Control. International Journal of Modern Nonlinear Theory and Application, 5, 122-131. doi: 10.4236/ijmnta.2016.53013.
References

[1]   Podlubny, I. (1999) Fractional Differential Equations. Academic Press, New York.

[2]   Hilfer, R. (2001) Applications of Fractional Calculus in Physics. World Scientific, New Jersey.

[3]   Grigorenko, I. and Grigorenko, E. (2003) Chaotic Dynamics of the Fractional Lorenz System. Physical Review Letters, 91, Article ID: 034101.
http://dx.doi.org/10.1103/PhysRevLett.91.034101

[4]   Hartley, T.T., Lorenzo, C.F. and Qammer, H.K. (1995) Chaos in a Fractional Order Chua’s System. IEEE Transactions on Circuits and Systems CAS-I, 42, 485-490.
http://dx.doi.org/10.1109/81.404062

[5]   Gao, X. and Yu, J.B. (2005) Chaos in the Fractional Order Periodically Forced Complex Duffing’s Oscillators. Chaos, Solitons and Fractals, 24, 1097-1104.
http://dx.doi.org/10.1016/j.chaos.2004.09.090

[6]   Li, C.G. and Chen, G.R. (2004) Chaos and Hyperchaos in the Fractional-Order Rossler Equations. Physica A, 341, 55-61.
http://dx.doi.org/10.1016/j.physa.2004.04.113

[7]   Li, C.P. and Peng, G.J. (2005) Chaos in Chen’s System with a Fractional Order. Chaos, Solitons and Fractals, 22, 443-450.
http://dx.doi.org/10.1016/j.chaos.2004.02.013

[8]   Kopell, N. and Washburn, R.B. (1982) Chaotic Motions in the Two-Degree-Of-Freedom Swing Equations. IEEE Transactions on Circuits and Systems, 29, 738-746.
http://dx.doi.org/10.1109/TCS.1982.1085094

[9]   Lee, B. and Ajjarapu, V. (1993) Period-Doubling Route to Chaos in an Electrical Power System. IEE Proceedings C-Generation, Transmission and Distribution, 140, 490-496.
http://dx.doi.org/10.1049/ip-c.1993.0071

[10]   Chiang, H.D., Conneen, T.P. and Flueck, A.J. (1994) Bifurcations and Chaos in Electric Power Systems: Numerical Studies. Journal of the Franklin Institute, 331, 1001-1036.
http://dx.doi.org/10.1016/0016-0032(94)90095-7

[11]   Ji, W. and Venkatasubramanian, V. (1996) Hard-Limit Induced Chaos in a Fundamental Power System Model. International Journal of Electrical Power and Energy Systems, 18, 279-295.
http://dx.doi.org/10.1016/0142-0615(95)00066-6

[12]   Chen, H.K., Lin, T.N. and Chen, J.H. (2005) Dynamic Analysis, Controlling Chaos and Chaotification of a SMIB Power System. Chaos, Solitons and Fractals, 22, 1307-1315.
http://dx.doi.org/10.1016/j.chaos.2004.09.081

[13]   Gholizadeh, H., Hassannia, A. and Azarfar, A. (2013) Chaos Detection and Control in a Typical Power System. Chinese Physics B, 22, 10503-10507.
http://dx.doi.org/10.1088/1674-1056/22/1/010503

[14]   Yu, Y.X., Jia, H.J., Li, P. and Su, J.F. (2003) Power System Instability and Chaos. Electric Power Systems Research, 65, 187-195.
http://dx.doi.org/10.1016/S0378-7796(02)00229-8

[15]   Tan, W., Zhang, M. and Li, Z.P. (2011) Chaotic Oscillation of Interconnected Power System and Its Synchronization. Journal of Hunan University of Science and Technology (Natural Science Edition), 26, 74-78. (In Chinese)

[16]   Sun, F.Y. and Li, Q. (2014) Dynamic Analysis and Chaos of the 4D Fractional-Order Power System. Abstract and Applied Analysis, 2014, Article ID: 534896.
http://dx.doi.org/10.1155/2014/534896

[17]   Ahmed, E., El-Sayed, A.M.A. and El-Saka, H.A.A. (2007) Equilibrium Points, Stability and Numerical Solutions of Fractional-Order Predator—Prey and Rabies Models. Journal of Mathematical Analysis and Applications, 325, 542-553.
http://dx.doi.org/10.1016/j.jmaa.2006.01.087

[18]   Tavazoei, M.S. and Haeri, M. (2007) A Necessary Condition for Double Scroll Attractor Existence in Fractional-Order Systems. Physics Letters A, 367, 102-113.
http://dx.doi.org/10.1016/j.physleta.2007.05.081

[19]   Tavazoei, M.S. and Haeri, M. (2008) Chaotic Attractors in Incommensurate Fractional Order Systems. Physica D: Nonlinear Phenomena, 237, 2628-2637.
http://dx.doi.org/10.1016/j.physd.2008.03.037

[20]   Aguila-Camacho, N., Duarte-Mermoud, M.A. and Gallegos, J.A. (2014) Lyapunov Functions for Fractional Order Systems. Communications in Nonlinear Science and Numerical Simulation, 19, 2951-2957.
http://dx.doi.org/10.1016/j.cnsns.2014.01.022

[21]   Li, Y., Chen, Y.Q. and Podlubny, I. (2009) Mittag-Leffler Stability of Fractional Order Nonlinear Dynamic Systems. Automatica, 45, 1965-1969.
http://dx.doi.org/10.1016/j.automatica.2009.04.003

[22]   Diethelm, K., Ford, N.J. and Freed, A.D. (2002) A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations. Nonlinear Dynamics, 29, 3-22.
http://dx.doi.org/10.1023/A:1016592219341

[23]   Diethelm, K. (1997) An Algorithm for the Numerical Solution of Differential Equations of Fractional Order. Electronic Transactions on Numerical Analysis, 5, 1-6.

[24]   Diethelm, K. and Ford, N.J. (2002) Analysis of Fractional Differential Equations. Journal of Mathematical Analysis and Applications, 265, 229-248.
http://dx.doi.org/10.1006/jmaa.2000.7194

[25]   Wolf, A., Swift, J.B., Swinneya, H.L. and Vastano, J.A. (1985) Determining Lyapunov Exponents from a Time Series. Physica D: Nonlinear Phenomena, 16, 285-317.
http://dx.doi.org/10.1016/0167-2789(85)90011-9

 
 
Top