JMP  Vol.2 No.8 , August 2011
Neutrino Masses in Supersymmetric Economical Model
ABSTRACT
The R-symmetry formalism is applied for the supersymmetric economical SU(3)cSU(3)LU(1))x(3-3-1) model. The generalization of the minimal supersymmetric standard model relation among R-parity, spin and matter parity is derived, and discrete symmetries for the proton stability in this model are imposed. We show that in such a case it is able to give leptons masses at just the tree level. A simple mechanism for the mass generation of the neutrinos is explored. With the new R-parity, the neutral fermions get mass matrix with two distinct sectors: one light which is identified with neutrino mass matrix, another heavy one which is identified with neutralinos one. The similar situation exists in the charged fermion sector. Some phenomenological consequences such as proton stability, neutrinoless double beta decays are discussed.

Cite this paper
nullP. Dong, D. Huong, M. Rodriguez and H. Long, "Neutrino Masses in Supersymmetric Economical Model," Journal of Modern Physics, Vol. 2 No. 8, 2011, pp. 792-802. doi: 10.4236/jmp.2011.28093.
References
[1]   S. F. SuperK, et al., “Solar B-8 and Hep Neutrino Measure-ments from 1258 Days of Super-Kamiokande Data,” Physical Review Letters, Vol. 86, No. 25, 2001, pp. 5651- 5655. doi:10.1103/PhysRevLett.86.5651

[2]   T. Araki, et al., “Measurement of Neutrino Oscillation with KamLAND: Evi-dence of Spectral Distortion,” Physical Review Letters, Vol. 94, No. 8, 2005, pp. 081801- 1-081801-5.

[3]   SNO Collaboration, B. Aharmim, et al., “Electron Energy Spectra, Uxes, and Daynight Asymmetries of B-8 Solar Neutrinos from Measure-ments with NaCl Dissolved in the Heavy-Water Detector at the Sudbury Neutrino Observatory,” Physical Review C, Vol. 72, No. 5, 2005, pp 055502-1-055502-47. doi:10.1103/PhysRevC.72.055502

[4]   M. Gell-Mann, P. Ramond and R. Slansky, In: D. Freedman and P. van Nieu-wenhuizen, Ed., Super-Gravity, Proceedings of the Work-Shop, North-Holland, Amsterdam, 1979,

[5]   J. Schechter and J. W. F. Valle, “Neutrino Masses in SU(2) × U(1) Theories,” Physi-cal Review D, Vol. 22, No. 9, 1980, pp. 2227-2235. doi:10.1103/PhysRevD.22.2227

[6]   J. Schechter and J. W. F. Valle, “Neutrino Decay and Spontaneous Violation of Lepton Number,” Physical Review D, Vol. 25, No. 3, 1982, pp. 774-783.

[7]   A. Zee, “A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation,” Physical Review B, Vol. 93, No. 4, 1980, pp. 389-393. doi:10.1016/0370-2693(80)90349-4

[8]   A. Zee, “Quantum Numbers of Majorana Neutrino Masses,” Nuclear Physics B, Vol. 264, 1986, pp. 99-110. doi:10.1016/0550-3213(86)90475-X

[9]   K. S. Babu, “Model of ‘Calculable’ Majorana Neutrino Masses,” Physical Review Letters, Vol. 203, No. 1-2, 1988, pp. 132-136. doi:10.1016/0370-2693(88)91584-5

[10]   K. S. Babu and E. Ma, “Natural Hierarchy of Radiatively Induced Majorana Neutrino Masses,” Physical Review Letters, Vol. 61, No. 6, 1988, pp. 674-677. doi:10.1103/PhysRevLett.61.674

[11]   D. Chang, W.-Y. Keung and P. B. Pal, “Spontaneous Lepton Number Breaking at Elec-troweak Scale,” Physical Review Letters, Vol. 61, No. 21, 1988, pp. 2420-2423. doi:10.1103/PhysRevLett.61.2420

[12]   F. Pisano and V. Ple-itez, “An SU(3) × U(1) Model for Electroweak Interactions,” Physical Review D, Vol. 46, 1992, pp. 410-417. doi:10.1103/PhysRevD.46.410

[13]   P. H. Frampton, “Chiral Dilepton Model and the Avor Question,” Physical Review Let-ters, Vol. 69, No. 20, 1992, pp. 2889-2891. doi:10.1103/PhysRevLett.69.2889

[14]   R. Foot, O. F. Hernan-dez, F. Pisano and V. Pleitez, “Lepton Masses in an SU(3)L × U(1)N Gauge Model,” Physical Review D, Vol. 47, No. 9, 1993, pp. 4158-4161. doi:10.1103/PhysRevD.47.4158

[15]   M. Singer, J. W. F. Valle and J. Schechter, “Canonical Neutral Current Predictions from the Weak Electromagnetic Guage Group SU(3) × U(1),” Physi-cal Review D, Vol. 22, No. 3, 1980, pp. 738-743. doi:10.1103/PhysRevD.22.738

[16]   R. Foot, H. N. Long and T. A. Tran, “SU(3)L × U(1)N and SU(4)L × U(1)N Gauge Models with Right-Handed Neutrinos,” Physical Review D, Vol. 50, No. 1, 1994, pp. 34-38. doi:10.1103/PhysRevD.50.R34

[17]   J. C. Montero, F. Pisano and V. Pleitez, “Neutral Currents and GIM Mechanism in SU(3)L × U(1)N Models for Electroweak Interac-tions,” Physical Review D, Vol. 47, No. 7, 1993, pp. 2918-2929. doi:10.1103/PhysRevD.47.2918

[18]   H. N. Long, “SU(3)C × SU(3)N × U(1)N Model with Right- Handed Neutrinos,” Physi-cal Review D, Vol. 53, No. 1, 1996, pp. 437-445. doi:10.1103/PhysRevD.53.437

[19]   F. Pisano, “A Simple So-lution for the Flavor Question,” Modern Physics Letters A, Vol. 11, No. 32-33, 1996, pp. 2639-2647. doi:10.1142/S0217732396002630

[20]   C. A. de S. Pires and O. P. Ravinez, “Charge Quantization in a Chiral Bilepton Gauge Model,” Physical Review D, Vol. 58, 1998, pp. 035008-1-035008-5.

[21]   J. C. Montero, C. A. de S. Pires and V. Pleitez, “Neutrino Masses through a Type II Seesaw Mecha-nism at TeV Scale,” Physical Review B, Vol. 502, 2001, pp. 167-170.

[22]   A. G. Dias and V. Pleitez, “Stabilizing the In-visible Axion in 3-3-1 Models,” Physical Review D, Vol. 69, No. 7, 2004, pp. 077702-1-077702-4. doi:10.1103/PhysRevD.69.077702

[23]   A. G. Dias and A. Dor, “Neutrino Decay and Neutrinoless Double Beta Decay in a 3-3-1 Model,” Physical Review D, Vol. 72, No. 3, 2005, pp. 035006-1-035006-8. doi:10.1103/PhysRevD.72.035006

[24]   T. Kitabayashi and M. Yasuμe, “Two Loop Radiative Neutrino Mechanism in an SU(3)L × U(1)N Gauge Model,” Physical Review D, Vol. 63, No. 9, 2001, pp. 095006-1-095006-6.

[25]   H. N. Long and T. Inami, “S, T, U Parameters in SU(3)C × SU(3)L × U(1) Model with Right-Handed Neutrinos,” Physical Review D, Vol. 61, No. 7, 2000, pp. 075002- 1-075002-9. doi:10.1103/PhysRevD.61.075002

[26]   P. Van Dong, H. N. Long and D. V. Soa, “Higgs-Gauge Boson Interactions in the Economical 3-3-1 Model,” Physical Review D, Vol. 73, No. 7, 2006, pp. 075005-1- 075005-15. doi:10.1103/PhysRevD.73.075005

[27]   P. V. Dong, H. N. Long, D. T. Nhung and D. V. Soa, “SU(3)C × SU(3)L × U(1)X Model with Two Higgs Triplets,” Physical Review D, Vol. 73, No. 3, 2006, pp. 035004-1-035004-11. doi:10.1103/PhysRevD.73.035004

[28]   P. V. Dong and H. N. Long, “The Economical SU(3)C × SU(3)L × U(1)X Model,” Ad-vanced High Energy Physics, Vol. 2008, 2008, pp. 739492-739567.

[29]   D. Chang and H. N. Long, “Interesting Radiative Patterns of Neutrino Mass in an SU(3)C × SU(3)L × U(1)X Model with Right-Handed Neutrinos,” Physical Review D, Vol. 73, No. 5, 2006, pp. 053006-1-053006-17. doi:10.1103/PhysRevD.73.053006

[30]   A. G. Dias, C. A. de S. Pires and P. S. Rodrigues da Silva, “Naturally Light Right-Handed Neutrinos in a 3-3-1 Model,” Physical Letters B, Vol. 628, No. 1-2, 2005, 85- 92. doi:10.1016/j.physletb.2005.09.028

[31]   J. C. Montero, V. Pleitez and M. C. Rodriguez, “Supersymmetric 3-3-1 Model with Right-Handed Neutrinos,” Physical Review D, Vol. 70, No. 7, 2004, pp. 075004-1- 075004-8. doi:10.1103/PhysRevD.70.075004

[32]   D. T. Huong, M. C. Rodriguez and H. N. Long, “Scalar Sector of Supersymmetric Su(3)C × Su(3)L × U(1)N Model with Right-Handed Neutri-nos,”.

[33]   P. V. Dong, D. T. Huong, M. C. Rodriguez and H. N. Long, “Neutrino Masses in the Supersymmetric SU(3)C × SU(3)L × U(1)X Model with Right-Handed Neutrinos,” The European Physical Journal C, Vol. 48, No. 1, 2006, pp. 229-241. doi:10.1140/epjc/s10052-006-0010-z

[34]   P. V. Dong, D. T. Huong, M. C. Rodriguez and H. N. Long, “Supersymmet-ric Economical 3-3-1 Model,” Nuclear Physics B, Vol. 772, No. 1-2, 2007, pp. 150-174. doi:10.1016/j.nuclphysb.2007.03.003

[35]   H. E. Haber and G. L. Kane, “The Search for Supersymmetry: Probing Physics beyond the Standard Model,” Phy- sics Reports, Vol. 117, No. 2-4, 1985, pp. 75-263. doi:10.1016/0370-1573(85)90051-1

[36]   D. T. Huong and H. N. Long, “Neutralinos and Charginos in Supersymmetric Eco-nomical 3-3-1 Model,” JHEP07, Vol. 2008, 2008, pp. 049-1-049-17.

[37]   P. V. Dong, H. N. Long and D. V. Soa, “Neutrino Masses in the Economical 3-3-1 Model,” Physical Review D, Vol. 75, No. 7, 2007, pp. 073006-1-073006-13. doi:10.1103/PhysRevD.75.073006

[38]   D. T. Huong and H. N. Long, “Non-thermal Leptogenesis in Supersymmetric 3-3-1 Model with in Ationary Scenario,” Journal of Physics G: Nu-clear and Particle Physics, Vol. 38, No. 1, Article ID: 015202.

[39]   W. M. Yao, et al., “Review of Particle Physics,” Journal of Physics G: Nuclear and Particle Physics, Vol. 33, No. 1, 2006, 1-1232. doi:10.1088/0954-3899/33/1/001

[40]   J. C. Montero, V. Pleitez and M. C. Rodriguez, “Lepton Masses in a Supersymmetric 3-3-1 Model,” Physical Review D, Vol. 65, No. 9, 2002, pp. 095008-1-095008-11. doi:10.1103/PhysRevD.65.095008

[41]   D. Yu. Akimov, et al., “Limits on Inelastic Dark Matter from ZEPLIN-III,” Vol. 692, No. 3, 2010, pp. 180-183.

[42]   M. Capdequi-Peyranμere and M. C. Rodriguez, “Charginos and Neutralinos Production at 3-3-1 Supersymmetric Model in e-e Scattering,” Physical Re-view D, Vol. 65, No. 3, 2002, pp. 035001-1-035001-16.

[43]   P. Fayet, “Supergauge Invariant Extension of the Higgs Mecha-nism and a Model for the Electron and Its Neutrino,” Nuclear Physics B, Vol. 90, 1975, pp. 104-124. doi:10.1016/0550-3213(75)90636-7

[44]   P. Fayet, “Super-symmetry and Weak, Electromagnetic and Strong Interactions,” Physical Review B, Vol. 64, No. 2, 1976, pp. 159-162.

[45]   P. Fayet, “Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions,” Physical Re-view B, Vol. 69, No. 4, 1977, pp. 489-494. doi:10.1016/0370-2693(77)90852-8

[46]   P. Fayet, In: A. Perlmutter and L. F. Scott, Eds., New Frontiers in High-Energy Physics, Proceedings Orbis Scientiae, Coral Gables, 1978, p. 413.

[47]   M. C. Rodriguez, “History of Supersymmetric Exten-sions of the Standard Model,” International Journal of Modern Physics A, Vol. 25, No. 6, 2010, pp. 1091-1121. doi:10.1142/S0217751X10048950

[48]   H. Dreiner, “An In-troduction to Explicit R-Parity Violation,” Pramana, Vol. 51, No. 1-2, pp. 123-133.

[49]   J. L. Goity and Marc Sher, “Bounds on Delta B = 1 Couplings in the Supersymmetric Standard Model,” Physical Review B, Vol. 346, No. 1-2, 1995, pp. 69-74.

[50]   I. Hinchliffe and T. Kaeding, “B- and L-Violating Couplings in the Minimal Supersymmetric Standard Model,” Physical Review D, Vol. 47, No. 1, 1993, pp. 279-284. doi:10.1103/PhysRevD.47.279

[51]   A. Yu. Smirnov and F. Vissani, “Upper Bound on All Products of R-Parity Violating Couplings Lambda-Prime and Lambda-Prime-Prime from Pro-ton Decay,” Physical Review B, Vol. 380, No. 3-4, 1996, pp. 317-323. doi:10.1016/0370-2693(96)00495-9

[52]   M. Dress, R. M. Godbole and P. Royr, “Theory and Phenomenology of Sparti-cles,” 1st Edition, World Scientific Publishing Co., Singapore City, 2004.

[53]   H. Baer and X. Tata, “Weak Scale Supersym-metry: From Superfields to Scattering Events,” 1st Edition, Cambridge University Press, Cambridge, 2006.

[54]   R. Barbier, et al., “R-Parity Violating Supersymmetry,” Physics Reports, Vol. 420, No. 1-6, 2005, pp. 1-195. doi:10.1016/j.physrep.2005.08.006

[55]   G. Moreau, “Phe-nomenological Study of R-Parity Symmetry Violating Interac-tions in Supersymmetric Theories,” In French, arXiv: hep-ph/0012156.

[56]   HEIDELBERG-MOSCOW Collabora-tion, A. Balysh, et al., “SubeV Limit for the Neutrino Mass from Ge-76 Double Beta Decay by the Heidelberg―Moscow Ex-periment,” Physical Review B, Vol. 356, 1995, p. 450.

[57]   H. V. Klapdor-Kleingrothaus, “Double Beta Decay and Neutrino Mass: The Heidelberg-Moscow Experiment,” Progress in Par-ticle and Nuclear Physics, Vol. 32, 1994, pp. 261-280. doi:10.1016/0146-6410(94)90024-8

[58]   H. V. Klap-dor-Kleingrothaus, “Double-Beta Decay And Related Topics: Proceedings of the International Workshop Held at European Centre for Theoretical Studies (ECT): Trento, Italy, April 24-May 5, 1995,” 1995, World Scientific, Singapore.

[59]   L. Baudis, et al., “The Heidelberg—Moscow Experiment: Im-proved Sensitivity for Ge-76 Neutrinoless Double Beta Decay,” Physical Review B, Vol. 407, No. 3-4, 1997, pp. 219-224. doi:10.1016/S0370-2693(97)00756-9

[60]   H. V. Klap-dor-Kleingrothaus, A. Dietz, H. L. Harney and I. V. Krivosheina, “Evidence for Neutrinoless Double Beta Decay,” Modern Phys-ics Letters A, Vol. 16, No. 37, 2001, pp. 2409-2420. doi:10.1142/S0217732301005825

[61]   M. G?unther, et al., “Heidelberg—Moscow Beta-Beta Experiment with Ge-76: Full Setup with ve Detectors,” Physical Review D, Vol. 55, 1996, pp. 54-67.

[62]   R. N. Mohapatra, “New Contributions to Neutri-noless Double Beta Decay in Super-Symmetric Theories,” Physical Review D, Vol. 34, No. 11, 1986, pp. 3457-3461. doi:10.1103/PhysRevD.34.3457

[63]   J. D. Vergados, “Neutri-noless Double Beta Decay without Majorana Neutrinos in Su-persymmetric Theories,” Physical Review B, Vol. 184, No. 1, 1987, pp. 55-62. doi:10.1016/0370-2693(87)90487-4

[64]   M. Hirsch, H. V. Klapdor-Kleingrothaus and S. G. Kovalenko, “New Supersym-metric Contributions to Neutrinoless Double Beta Decay,” Physical Review B, Vol. 352, No. 1-2, 1995, pp. 1-7.

[65]   M. Hirsch, H. V. Klapdor-Kleingrothaus and S. G. Kovalenko, “New Constraints On R-Parity Broken Supersymmetry from Neutrinoless Double Beta Decay,” Physical Review Letters, Vol. 75, No. 1, 1995, pp. 17-20. doi:10.1103/PhysRevLett.75.17

[66]   K. S. Babu and R. N. Mohapatra, “New Vector―Scalar Contributions to Neutrinoless Double Beta Decay and Constraints on R-Parity Violation,” Physical Review Letters, Vol. 75, No. 12, 1995, pp. 2276-2279. doi:10.1103/PhysRevLett.75.2276

[67]   M. Hirsch, H. V. Klapdor-Kleingrothaus and S. G. Kovalenko, “On the SUSY Accompanied Neutrino Exchange Mechanism of Neutrinoless Double Beta Decay,” Physical Review B, Vol. 372, No. 3-4, 1996, pp. 181-186.

[68]   M. Hirsch, H. V. Klap-dor-Kleingrothaus and S. G. Kovalenko, “Supersymmetry and Neutrinoless Double Beta Decay,” Physical Review D, Vol. 53, No. 3, 1996, pp. 1329-1348. doi:10.1103/PhysRevD.53.1329

 
 
Top