Back
 JBiSE  Vol.9 No.10 B , September 2016
A New Lung Mechanics Model and Its Evaluation with Clinical Data
Abstract:
Acute Respiratory Distress Syndrome (ARDS) is a major cause of morbidity and has a high rate of mortality. ARDS patients in the intensive care unit (ICU) require mechan-ical ventilation (MV) for breathing support, but inappropriate settings of MV can lead to ventilator induced lung injury (VILI). Those complications may be avoided by carefully optimizing ventilation parameters through model-based approaches. In this study we introduced a new model of lung mechanics (mNARX) which is a variation of the NARX model by Langdon et al. A multivariate process was undertaken to deter-mine the optimal parameters of the mNARX model and hence, the final structure of the model fit 25 patient data sets and successfully described all parts of the breathing cycle. The model was highly successful in predicting missing data and showed minimal error. Thus, this model can be used by the clinicians to find the optimal patient specific ventilator settings.
Cite this paper: Jayaramaiah, M. , Laufer, B. , Kretschmer, J. and Möller, K. (2016) A New Lung Mechanics Model and Its Evaluation with Clinical Data. Journal of Biomedical Science and Engineering, 9, 107-115. doi: 10.4236/jbise.2016.910B014.
References

[1]   Rubenfeld, G.D., Caldwell, E., Peabody, E., Weaver, J., Martin, D.P., Neff, M., et al. (2005) Incidence and Outcomes of Acute Lung Injury. New England Journal of Medicine, 353, 1685-1693. http://dx.doi.org/10.1056/NEJMoa050333

[2]   Slutsky, A.S. and Marco Ranieri, V. (2000) Mechanical Ventilation: Lessons from the ARDS Net Trial. Respiratory Research, 1, 73-77. http://dx.doi.org/10.1186/rr15

[3]   Girard, T.D. and Bernard, G.R. (2007) Mechanical Ventilation in ARDS. Chest, 131, 921- 929. http://dx.doi.org/10.1378/chest.06-1515

[4]   Esteban, A., Anzueto, A., Frutos, F., Alia, I., Brochard, L., Stewart, T.E., et al. (2002) Characteristics and Outcomes in Adult Patients Receiving Mechanical Ventilation: A 28-Day International Study. JAMA, 287, 345-355. http://dx.doi.org/10.1001/jama.287.3.345

[5]   Brower, R.G., Morris, A., MacIntyre, N., Matthay, M.A., Hayden, D., Thompson, T., et al. (2003) Effects of Recruitment Maneuvers in Patients with Acute Lung Injury and Acute Respiratory Distress Syndrome Ventilated with High Positive End-Expiratory Pressure. Crit Care Med, 31, 2592-2597. http://dx.doi.org/10.1097/01.CCM.0000090001.91640.45

[6]   Pulletz, S., Adler, A., Kott, M., Elke, G., Gawelczyk, B., Schädler, D., et al. (2012) Regional Lung Opening and Closing Pressures in Patients with Acute Lung Injury. Journal of Critical Care, 27, 323.e11-323.e18. http://dx.doi.org/10.1016/j.jcrc.2011.09.002

[7]   Dreyfuss, D. and Saumon, G. (1998) Ventilator-Induced Lung Injury. Lessons from Experi-mental Studies. Am J Respir Crit Care Med, 157, 294-323. http://dx.doi.org/10.1164/ajrccm.157.1.9604014

[8]   Dreyfuss, D. and Saumon, G. (1998) From Ventilator-Induced Lung Injury to Multiple Organ Dysfunction? Intensive Care Medicine, 24, 102-104. http://dx.doi.org/10.1007/s001340050529

[9]   Petrucci, N. and De Feo, C. (2013) Lung Protective Ventilation Strategy for the Acute Res-piratory Distress Syndrome. Cochrane Database of Systematic Reviews. http://dx.doi.org/10.1002/14651858.CD003844.pub4

[10]   Chiew, Y.S., Chase, J.G., Shaw, G., Sundaresan, A. and Desaive, T. (2011) Mod-el-Based PEEP Optimisation in Mechanical Ventilation. BioMedical Engineering OnLine, 10, 111. http://dx.doi.org/10.1186/1475-925X-10-111

[11]   Lozano, S., Moller, K., Brendle, A., Gottlieb, D., Schumann, S., Stahl, C.A., et al. (2008) AUTOPILOT-BT: A System for Knowledge and Model Based Mechanical Ventilation Technol Health Care, 16, 1-11.

[12]   Sundaresan, A., Chase, J., Shaw, G., Chiew, Y.S. and Desaive, T. (2011) Model-Based Optimal PEEP in Mechanically Ventilated ARDS Patients in the Intensive Care Unit. BioMedical Engineering OnLine, 10, 64. http://dx.doi.org/10.1186/1475-925X-10-64

[13]   Schranz, C., Docherty, P.D., Chiew, Y.S., Chase, J.G., and Moller, K. (2012) Structural Identifiability and Practical Applicability of an Alveolar Recruitment Model for ARDS Patients. IEEE Transactions on Biomedical Engineering, 59, 3396-3404. http://dx.doi.org/10.1109/TBME.2012.2216526

[14]   Knörzer, A., Docherty, P.D., Chiew, Y.S., Chase, J.G. and Möller, K. (2014) An Ex-tension to the First Order Model of Pulmonary Mechanics to Capture a Pressure Dependent Elastance in the Human Lung. Conference Paper to 19th IFAC World Congress.

[15]   Docherty, P.D., Schranz, C., Chiew, Y.-S., Möller, K. and Chase, J.G. (2014) Reformulation of the Pressure-Dependent Recruitment Model (PRM) of Respiratory Mechanics. Biomedical Signal Processing and Control, 12, 47-53. http://dx.doi.org/10.1016/j.bspc.2013.12.001

[16]   Laufer, B., Docherty, P.D., Knörzer, A., Chiew, Y.S., Langdon, R., Möller, K., et al. Per-formance of Variations of the Dynamic Elastance Model in Lung Mechanics. Control Engineering Practice.

[17]   Langdon, R., Docherty, P.D., Chiew, Y.S., Möller, K. and Chase, J.G. (2015) 9th IFAC Symposium on Biological and Medical Systems BMS 2015—Interpolation within a Recruitment Manoeuvre Using a Non-Linear Autoregressive Model of Pulmonary Mechanics. IFAC-Papers OnLine, 48, 297-302. http://dx.doi.org/10.1016/j.ifacol.2015.10.155

[18]   Stahl, C.A., Moller, K., Schumann, S., Kuhlen, R., Sydow, M., Putensen, C., et al. (2006) Dynamic versus Static Respiratory Mechanics in Acute Lung Injury and Acute Respiratory Distress Syndrome. Crit Care Med, 34, 2090-2098. http://dx.doi.org/10.1097/01.CCM.0000227220.67613.0D

[19]   Langdon, R., Docherty, P.D., Chiew, Y.-S., Möller, K. and Chase, J.G. (2016) Use of Basis Functions within a Non-Linear Autoregressive Model of Pulmonary Mechanics. Biomedical Signal Processing and Control, 27, 44-50. http://dx.doi.org/10.1016/j.bspc.2016.01.010

 
 
Top