Back
 JBiSE  Vol.9 No.10 B , September 2016
A More Effective Method of Extracting the Characteristic Value of Pulse Wave Signal Based on Wavelet Transform
Abstract:
Pulse wave contains human physiological and pathological information. Different people will exhibit different characteristics, and hence determining the characteristic points of the pulse wave of human physiological health makes sense. It is common that we extract the characteristic value of pulse wave signal with the method based on wavelet transform on a small scale, and then determine the locations of the characteristic points by modulus maxima and modulus minima. Before determining characteristic value by detecting modulus maxima and modulus minima, we need to determine every period of the pulse wave. This paper presents a new kind of adaptive threshold determination method which is more effective. It can accurately determine every period of the pulse wave, and then extract characteristic values by modulus maxima and modulus minima in every period of the pulse wave. The method presented in this paper promotes the research utilizing pulse wave on health life.
Cite this paper: Zhang, X. , Shang, Y. , Guo, D. , Zhao, T. , Li, Q. and Wang, X. (2016) A More Effective Method of Extracting the Characteristic Value of Pulse Wave Signal Based on Wavelet Transform. Journal of Biomedical Science and Engineering, 9, 9-19. doi: 10.4236/jbise.2016.910B002.
References

[1]   Di, N.-Q. and Xie, M. (2007) Pulse Waveform Interpretation. Chinese Journal of Information on Traditional Chinese Medicine, 6, 3-4.

[2]   Nitzan, M., khanokh, B. and Slovik, Y. (2002) The Difference in Pulse Transit Time to the toe and Finger Measured by Pho-to-Plethysmography. Physiol Meas, 23, 85-93. http://dx.doi.org/10.1088/0967-3334/23/1/308

[3]   Tang, M.-Y., Li, K. and Ma, X.-T. (2010) Research on Pulse Wave Signal and Time-Domain Feature Extraction Algorithm. Computer and Modernization, 176, 16-22.

[4]   Qu, N.Q. and Xie, M.Z. (2007) The Definition of Pulse Wave. Chinese Journal of Information on Tradition Chinese Medicine, 14, 3-4.

[5]   Doherty, P., Grabowski, M., Lukaszewicz, W., et al. (2003) Towards a Framework for Approximate Ontologies. Fundamenta Informaticae, 57, 147-165.

[6]   Zhao, Z.Q., Zheng, G.W., Shen, W., et al. (2013) Research on Pulse Wave Signal Noise Reduction and Feature Point Identification. Electronic Design Engineering, 21, 57-60.

[7]   Daubechies, I. (1990) The Wavelet Transform, Time-Frequency Locatization and Signal Analysis. IEEE Transactions on In-formation Theory, 36, 961-1001. http://dx.doi.org/10.1109/18.57199

[8]   Kivanc Mihcak, M., Kozintsev, I., Ramchandran, K. and Moulin, P. (1999) Low-Complexity Image Denoising Based on Statistical Modeling of Wavelet Coefficients. IEEE Signal Processing Letters, 6, 300-303. http://dx.doi.org/10.1109/97.803428

[9]   Zhang, X., Wang, H.Y. and Li, B.J. (2010) Powerline Interference Denoising Algorithm Analysis of ECG Signals Based on Wavelet Transform. Computer Measurement & Control, 18, 902-905.

 
 
Top