OJCM  Vol.6 No.4 , October 2016
Prediction of the Enhanced Out-of-Plane Thermal Conductivity of Carbon Fiber Composites Produced by VARTM
Abstract: The thermal conductivity of epoxy resin can be increased by a factor of eight to ten by loading with highly conductive particles. However, higher loadings increase the viscosity of the resin and hamper its use for liquid composite molding processes. Thus, the enhancement of the out-of-plane thermal conductivity of carbon composites manufactured by VARTM and accomplished by matrix filling is limited to about 250%. In order to derive higher increases in out-of-plane thermal conductivity, additional measures have to be taken. These consist of introducing thermally conductive fibers in out-of-plane direction of the preform using a 3D-weaving process. Measured out-of-plane thermal conductivities of 3D-woven fabric composites are significantly increased compared to a typical laminated composite. It has been shown that if introducing highly conductive z-fibers, the use of a particle filled resin is not necessary and furthermore should be avoided due to the manufacturing problems mentioned above. An existing analytical model was altered to predict the effective thermal conductivity as a function of the composite material properties such as the thermal conductivities and volume contents of fibers in in-plane and out-of-plane directions, the thermal conductivity of the loaded resin, the grid-density of the out- of-plane fibers, and material properties of the contacting material. The predicted results are compared with measured data of manufactured samples.
Cite this paper: Schuster, J. , Schütz, M. , Lutz, J. and Lempert, L. (2016) Prediction of the Enhanced Out-of-Plane Thermal Conductivity of Carbon Fiber Composites Produced by VARTM. Open Journal of Composite Materials, 6, 100-111. doi: 10.4236/ojcm.2016.64010.

[1]   Schuster, J., Heider, D., Sharp, K. and Glowania, M. (2008) Thermal Conductivities of Three-Dimensionally Woven Fabric Composites. Composite Science and Technology, 68, 9, 2085-2091.

[2]   Zhou, W. (2011) Effect of Coupling Agents on the Thermal Conductivity of Aluminum Particle/Epoxy Resin Composites. Journal of Material Science, 46, 3883-3889.

[3]   Lee, E.-S., Lee, S.-M., Shanefield, D.J. and Cannon, W.R. (2008) Enhanced Thermal Conductivity of Polymer Matrix Composie via High Solids Loading of Aluminum Nitride in Epoxy Resin. Journal of American Ceramic Society, 91, 1169-1174.

[4]   He, Y.-M., Wang, Q.-Q., Lei, W. and Liu, Y.-S. (2014) Functionalization of Boron Nitride Nanoparticles and Their Utilization in Epoxy Composites with Enhanced Thermal Conductivity. Physica Status Solidi (A), 211, 677-684.

[5]   Gu, J., Zhang, Q., Dang, J. and Xie, C. (2012) Thermal Conductivity Epoxy Resin Composites Filled with Boron Nitride. Polymer Advanced Technologies, 23, 1025-1028.

[6]   Hong, J.-P., Yoon, S.-W., Hwang, T., Oh, J.-S., Hong, S.-C., Lee, Y. and Nam, J.-D. (2012) High Thermal Conductivity Epoxy Composites with Bimodal Distribution of Aluminum Nitride and Boron Nitride Fillers. Thermochimica Acta, 537, 70-75.

[7]   Ma, A-J., Li, H., Chen, W. and Hou, Y. (2013) Improved Thermal Conductivity of Silicon Carbide/Carbon Fiber/Epoxy Resin Composites. Polymer-Plastics Technology and Engineering, 52, 295-299.

[8]   Kusunose, T., Yagi, T., Firoz, S.H. and Sekino, T. (2013) Fabrication of Epoxy Silicon Nitride Nanowire Composites and Evaluation of Their Thermal Conductivity. Journal of Material Chemistry A, 1, 3440-3445.

[9]   King, J.A., Via, M.D., Caspary, J.A., Jubinski, M.M., Miskioglu, I., Mills, O.P. and Bogucki, G.R. (2010) Electrical and Thermal Conductivity and Tensile and Flexural Properties of Carbon Nanotube/Polycarbonate Resins. Journal of Applied Polymer Science, 118, 2512- 2520.

[10]   Ma, A-J., Li, H., Chen, W. and Hou, Y. (2012) Enhanced Thermal Conductivity Epoxy Composites with MWCNT’s/AIN Hybrid Fillers. Polymer-Plastics Technology and Engineering, 51, 1578-1582.

[11]   Guo, W. and Chen, G. (2014) Fabrication of Graphene/Epoxy Resin Composites with Much Enhanced Thermal Conductivity via Ball Milling Technique. Journal of Applied Polymer Science, 131, 1-5.

[12]   Fu, Y.-X., He, Z.-X., Mo, D.-C. and Lu, S.S. (2014) Thermal Conductivity Enhancement of Epoxy Adhesive Using Graphene Sheets as Additives. International Journal of Thermal Sciences, 86, 276-283.

[13]   Yu, H., Li, L.L., Kido, T., Xi, G.N., Xu, G.C. and Guo, F. (2012) Thermal and Insulating Properties of Epoxy/Aluminum Nitride Composites Used for Thermal Interface Material. Journal Applied Polymer Science, 124, 669-677.

[14]   Wang, F., Drzal, L.T., Qin, Y. and Huang, Z. (2015) Mechanical Properties and Conductivity of Grapheme Nanoplatelet/Epoxy Composites. Journal of Material Sciences, 50, 1082- 1093.

[15]   Ma, A.-J., Li, H., Chen, W. and Hou, Y. (2015) Mechanical and Thermal Conductivities of MWCNTs/Si3N4/Epoxy Composites. Polymer-Plastics Technology and Engineering, 52, 1590-1594.

[16]   Schuster, J., Govignon, Q. and Bickerton, S. (2014) Processability of biobased Thermoset Resinsand Flax Fibres Reinforcements Using Vacuum Assisted Resin Transfer Moulding. Open Journal of Composite Materials, 4, 1-11.

[17]   Liang, J., Saha, M. and Altan, C. (2013) Effect of Carbon Nanofibers on the Thermal Conductivity of Carbon Fiber Reinforced Composites. Procedia Engineering, 56, 814-820.

[18]   Glowania, M.H.E. (2013) Untersuchung und Methodenentwicklung zur Steigerung der Warmeleitfahigkeit von Faserverbundkunststoffen. PhD Thesis, RWTH Aachen, Aachen.

[19]   Partridge, I.K. and Cartié, D.D.R. (2005) Delamination Resistant Laminates by Z-Fiber? Pinning: Part I Manufacture and Fracture Performance. Composite Part A, 36, 55-64.

[20]   Wulfhorst, B. (1998) Textile Fertigungsverfahren-Eine Einführung. Hanser Verlag, Mün- chen Wien.

[21]   ASTM (2004) Standard Test Method for Thermal Conductivity of Solids by Means of the Guarded-Comparative-Longitudinal Heat Flow Technique. ASTM, E1225-04.

[22]   Laubitz, M.J. (1984) Axial Heat Flow Methods of Measuring Thermal Conductivity, Compendium of Thermophysical Property Measurement Methods. Vol. 1, Plenum Press, New York.

[23]   Maxwell, J.C. (1873) A Treatise on Electricity and Magnetism. Clarendon Press, Oxford.

[24]   Bruggemann, D.A.G. (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen. Annalen der Physik, 416, 636-664.

[25]   Cheng, S.C. and Vachon, R.I. (1970) A Technique for Predicting the Thermal Conductivity of Suspensions, Emulsions and Porous Materials. International Journal of Heat and Mass Transfer, 13, 537-546.

[26]   Nielsen, L.E. (1973) Thermal Conductivity of Particulate-Filled Polymers. Journal of Applied Polymer Science, 17, 3819-3820.

[27]   übler, W. (2002) Erhohung der thermischen Leitfahigkeit elektrisch leitender Polymer- werkstoffe. PhD Thesis, Universtiy Erlangen-Nürnberg, Nürnberg.

[28]   Beneviste, Y. and Miloh, T. (1986) The Effective Conductivity of Composites with Imperfect Thermal Contact at Constituent Interfaces. International Journal of Engineering Science, 24, 1537-1552.

[29]   Zhang, G., Xia, Y., Wang, H., Tao, Y., Tao, G., Tu, S. and Wu, H. (2010) A Percolation Model of Thermal Conductivity for Filled Polymer Composites. Journal of Composite Materials, 44, 963-970.

[30]   Kushch, V.I., Sevostianov, I. and Belaev, A.S. (2015) Effective Conductivity of Spheroidal Particles Composite with Imperfect Interfaces: Complete Solutions for Periodic and Random Micro Structures. Mechanics of Materials, 89, 1-11.

[31]   Thornburgh, J.D. and Pears, C.D. (1965) Prediction of the Thermal Conductivity of Filed and Reinforced Plastics. ASME-Paper, 65-WA/HT-4.

[32]   Hatta, H. and Taya, M. (1986) Thermal Conductivity of Coated Filler Composites. Journal of Applied Mechanics, 59, 1851-1860.

[33]   Schuster, J., Heider, D., Sharp, K. and Glowania, M. (2008) Measuring and Modeling of Thermal Conductivities of Three-Dimensionally Woven Fabric Composites. Mechanics of Composite Materials, 45, 165-174.