Back
 IJOC  Vol.6 No.3 , September 2016
Design, Synthesis and Biological Evaluation of Novel Antitubercular Agents by Combining Pyrazoline and Benzoxazole Pharmacophores
Abstract: Various recent reports on Tuberculosis have alarmed an increase in the patient class and subsequent death rates across the globe. Over and above the spread of more dangerous and fatal forms of tuberculosis like MDR-TB i.e. multiple-drug resistance tuberculosis, XDR-TB i.e. extensively-drug resistance tuberculosis & TDR-TB i.e. total-drug resistance tuberculosis has forwarded an urgent need to discover novel antitubercular agents. The current work is aimed at combining two previously well-known pharmacophores (pyrazoline and benzoxazole nucleus) in order to design and synthesize a series of novel benzoxazole-based pyrazoline derivatives. The synthesized target compounds were structurally confirmed by LCMS, 1H-NMR and 13C-NMR analysis. The target compounds were In vitro evaluated against M. tuberculosis H37Rv strain, multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) strains. The In vitro screening results depicted that majority of the target compounds displayed potent activity with MIC in a range of ~0.8 to 6.25 μg/mL. Many compounds were found to be more potent than isoniazid against MDR-TB with MIC value 3.12 μg/mL and XDR-TB with MIC value 12.5 μg/mL. Cytotoxicity assay of these active compounds on VERO cell lines also displayed good selectivity index.
Cite this paper: Soni, H. , Patel, P. , Chhabria, M. , Patel, A. , Rana, D. and Brahmkshatriya, P. (2016) Design, Synthesis and Biological Evaluation of Novel Antitubercular Agents by Combining Pyrazoline and Benzoxazole Pharmacophores. International Journal of Organic Chemistry, 6, 157-176. doi: 10.4236/ijoc.2016.63017.
References

[1]   Dye, C., Lonnroth, K., Jaramillo, E., Williams, B.G. and Raviglione, M. (2009) Trends in Tuberculosis Incidence and Their Determinants in 134 Countries. Bulletin of the World Health Organization, 87, 683-691.
http://dx.doi.org/10.2471/BLT.08.058453

[2]   World Health Organization (2010) Tuberculosis Fact Sheet No. 104.

[3]   World Health Organization (2010) Tuberculosis.

[4]   Udwadia, Z.F., Amale, R.A., Ajbani, K.K. and Rodrigues, C. (2012) Totally Drug-Resistant Tuberculosis in India. Clinical Infectious Diseases, 54, 579-581.
http://dx.doi.org/10.1093/cid/cir889

[5]   Temiz-Arpaci, O., Yildiz, I., Ozkan, S., Kaynak, F., Aki-Sener, E. and Yalcin, I. (2008) Synthesis and Biological Activity of Some New Benzoxazoles. European Journal of Medicinal Chemistry, 43, 1423-1431.
http://dx.doi.org/10.1016/j.ejmech.2007.09.023

[6]   Vinsova, J., Cermakova, K., Tomeckova, A., Ceckova, M., Jampilek, J., Cermak, P., Kunes, J., Dolezal, M. and Staud, F. (2006) Synthesis and Antimicrobial Evaluation of New 2-Substituted 5,7-Di-Tert-Butylbenzoxazoles. Bioorganic & Medicinal Chemistry, 14, 5850-5865.
http://dx.doi.org/10.1016/j.bmc.2006.05.030

[7]   Ozlem, T., Yildiz, I., Ozkan, S., Kaynak, F., AkiSener, E. and Yalcin, I. (2008) Synthesis and Biological Activity of Some New Benzoxa-zoles. European Journal of Medicinal Chemistry, 43, 1423-1431.
http://dx.doi.org/10.1016/j.ejmech.2007.09.023

[8]   Koci, J., Klimesová, V., Waisser, K., Kaustová, J., Dahse, H.-M. and Mollmann, U. (2002) Heterocyclic Benzoxazole Derivatives with Antimycobacterial in Vitro Activity. Bioorganic & Medicinal Chemistry Letters, 12, 3275-3278.
http://dx.doi.org/10.1016/S0960-894X(02)00697-2

[9]   Ileana, I.R., Rodriguez, A.D., Wang, Y. and Franzblau, S.G. (2006) Ileabethoxazole: A Novel Benzoxazole Alkaloid with Antimycobacterial Activity. Tetrahedron Letters, 47, 3229-3232.
http://dx.doi.org/10.1016/j.tetlet.2006.03.048

[10]   Manna, K. and Agrawal, Y.K. (2010) Design, Synthesis, and Antitubercular Evaluation of Novel Series of 3-Benzofuran-5-Aryl-1-Pyrazolyl-Pyridylmethanone and 3-Benzofuran-5- Ar-yl-1-Pyrazolylcarbonyl-4-Oxo-Naphthyridin Analogs. European Journal of Medicinal Chemistry, 45, 3831-3839.
http://dx.doi.org/10.1016/j.ejmech.2010.05.035

[11]   Shaharyar, M., Siddiqui, A.A. and Ali, M.A. (2006) Synthesis and Evaluation of Phenoxy Acetic Acid Derivatives as Anti-Mycobacterial Agents. Bioorganic & Medicinal Chemistry Letters, 16, 4571-4574.
http://dx.doi.org/10.1016/j.bmcl.2006.06.021

[12]   Sharma, S., Sharma, P.K., Kumar, N. and Dudhe, R. (2011) A Review on Various Heterocyclic Moieties and Their Antitubercular Activity. Biomedicine & Pharmacotherapy, 65, 244-251.
http://dx.doi.org/10.1016/j.biopha.2011.04.005

[13]   http://www.organic-chemistry.org/synthesis/heterocycles/oxazoles.shtm

[14]   http://www.organic-chemistry.org/synthesis/heterocycles/pyrazolidines.shtm

[15]   Arain, T.M., Resconi, A.E., Hickey, M.J. and Stover, C.K. (1996) Bioluminescence Screening in Vitro (Bio-Siv) Assays for High-Volume Antimycobacterial Drug Discovery. Antimicrobial Agents and Chemotherapy, 40, 1536-1541.

[16]   Chung, G.A. Aktar, C.Z., Jackson, S. and Duncan, K. (1995) High-Throughput Screen for Detecting Antimy-cobacterial Agents. Antimicrobial Agents and Chemotherapy, 9, 2235-2238.
http://dx.doi.org/10.1128/AAC.39.10.2235

[17]   Cooksey, R.C., Crawford, J.T., Jacobs, W.R. and Shinnick, T.M. (1993) A Rapid Method for Screening Antimicrobial Agents for Activities against a Strain of Mycobacterium Tuberculosis Expressing Firefly Luciferase. Antimicrobial Agents and Chemotherapy, 37, 1348-1352.
http://dx.doi.org/10.1128/AAC.37.6.1348

[18]   Nilsson, L.E., Hoffner, S.E. and Ansehn, S. (1988) Rapid Susceptibility Testing of Mycobacterium Tuberculosis by Bioluminescence Assay of Mycobacterial ATP. Antimicrobial Agents and Chemotherapy, 32, 1208-1212.
http://dx.doi.org/10.1128/AAC.32.8.1208

[19]   Ryan, C., Nguyen, B.-T. and Sullivan, S.J. (1995) Rapid Assay for Mycobacterial Growth and Antibiotic Susceptibility Using Gel Microdrop Encapsulation. Journal of Clinical Microbiology, 33, 1720-1726.

[20]   Collins, L. and Franzblau, S. (1997) Microplate Alamar Blue Assay versus BACTEC 460 System for High-Throughput Screening of Compounds against Mycobacterium Tuberculosis and Mycobacterium Avium. Antimicrobial Agents and Chemotherapy, 41, 1004-1009.

[21]   Lourenco, M.C.S., de Souza, M.V.N., Pinheiro, A.C., Ferreira, M.L., Goncalves, R.B., Nogneira, T.C.M. and Peralta, M.A. (2007) Evaluation of Anti-Tubercular Activity of Nicotinic and Isoniazid Analogues. ARKIVOC, 2007, 181-191.
http://dx.doi.org/10.3998/ark.5550190.0008.f18

[22]   Wang, S., Yan, J., Wang, J., Chen, J., Zhang, T., Zhao, Y. and Xue, M. (2010) Synthesis of Some 5-Phenylisoxazole-3-Carboxylic Acid Derivatives as Potent Xanthine Oxidase Inhibitors. European Journal of Medicinal Chemistry, 45, 2663-2670.
http://dx.doi.org/10.1016/j.ejmech.2010.02.013

[23]   Szell, T., Brand, A. and Ratanathanawongs, S. (1981) Two New Thia Chalcones. Journal of Chemical & Engineering Data, 26, 230.
http://dx.doi.org/10.1021/je00024a043

[24]   Stover, C.K., Warrener, P., Van Devanter, D.R., Sherman, D.R., Arain, T.M., Langhorne, M.H. and Anderson, S.W. (2000) A Small-Molecule Nitroimidazopyran Drug Candidate for the Treatment of Tuberculosis. Nature, 405, 962-966.
http://dx.doi.org/10.1038/35016103

[25]   Kuntal, M. and Agrawal, Y.K. (2010) Design, Synthesis, and Antitubercular Evaluation of Novel Series of 3-Benzofuran-5-Aryl-1-Pyrazolylpyridylmethanone and 3-Benzofuran-5- Ar-yl-1-Py-Razolylcarbonyl-4-Oxo-Naphthyridin Analogs. European Journal of Medicinal Chemistry, 45, 3831-3839.
http://dx.doi.org/10.1016/j.ejmech.2010.05.035

[26]   Mohammad, S., Siddiqui, A.A. and Mohamed, A.A. (2006) Synthesis and Evaluation of Phenoxy Acetic Acid Derivatives as Anti-Mycobacterial Agents. Bioorganic & Medicinal Chemistry Letters, 16, 4571-4574.
http://dx.doi.org/10.1016/j.bmcl.2006.06.021

 
 
Top