Back
 MSCE  Vol.4 No.9 , September 2016
Effect of Boron Addition on the Thermal Properties of Diamond-Particle-Dispersed Cu-Matrix Composites Fabricated by SPS
Abstract: Diamond particle dispersed copper (Cu) matrix composites were fabricated from the powder mixture composed of diamond, pure-Cu and boron (B) by spark plasma sintering (SPS). The composites were consolidated at 1173 K for 600 s by SPS. The reaction between the diamond particle and the Cu matrix in the composite was not confirmed by SEM observation and X-ray diffraction (XRD) analysis. The relative packing density of the Cu/diamond composites increased with B addition and attained 93.2% - 95.8% at the B content range between 1.8 vol.% and 13.8 vol.%. The thermal conductivity of the diamond-dispersed Cu composite drastically increased with B addition and reached the maximum value of 689 W/mK at 7.2 vol% B. Numerous transgranular fractures of diamond particles were observed on bending fracture surfaces of Cu-B/diamond composites. This indicates strong bonding between the diamond particle and the Cu matrix in the composite. The coefficient of thermal expansion of the composite falls in the upper line of Kerner’s model.
Cite this paper: Mizuuchi, K. , Inoue, K. , Agari, Y. , Tanaka, M. , Takeuchi, T. , Tani, J. , Kawahara, M. , Makino, Y. and Ito, M. (2016) Effect of Boron Addition on the Thermal Properties of Diamond-Particle-Dispersed Cu-Matrix Composites Fabricated by SPS. Journal of Materials Science and Chemical Engineering, 4, 1-16. doi: 10.4236/msce.2016.49001.
References

[1]   Halasz, G.S. (1995) Performance Trends in High-End Processors. Proceedings of the IEEE, 83, 20-36.
http://dx.doi.org/10.1109/5.362754

[2]   (1990) Properties and Selection: Nonferrous Alloys and Special-Purpose Mater. Metals Handbook, Vol. 2, 10th Edition, ASM Inter., 1119-1124.

[3]   (1994) In: Bauccio, M., Ed., ASM Engineered Mater., Reference Book, 2nd Edition, ASM Inter., Mater. Park, 360-369.

[4]   Kerns, J.A., Colella, N.J., Makowiecki, D. and Davidson, H.L. (1995) Copper-Diamond Composite Substrates for Electronic Components. Proceedings of 28th International Symposium on Microelectronics, 28-37.

[5]   Yoshida, K. and Morigami, H. (2004) Thermal Properties of Diamond/Copper Composite Material. Microelectronics Reliability, 44, 303-308.
http://dx.doi.org/10.1016/S0026-2714(03)00215-4

[6]   Mizuuchi, K., Inoue, K., Agari, Y., Yamada, S., Sugioka, M., Itami, M., Kawahara, M. and Makino, Y. (2007) Consolidation and Thermal Conductivity of Diamond Particle Dispersed Copper Matrix Composites Produced by Spark Plasma Sintering (SPS). Journal of the Japan Institute of Metals, 71, 1066-1069.
http://dx.doi.org/10.2320/jinstmet.71.1066

[7]   Mizuuchi, K., Inoue, K., Agari, Y., Yamada, S., Tanaka, M., Sugioka, M., Takeuchi, T., Tani, J., Kawahara, M., Lee, J.-H. and Makino, Y. (2010) Thermal Properties of Diamond Particle-Dispersed Cu-Matrix-Composites Fabricated by Spark Plasma Sintering (SPS). Materials Science Forum, 638-642, 2115-2120.
http://dx.doi.org/10.4028/www.scientific.net/MSF.638-642.2115

[8]   Weber, L. and Tavangar, R. (2007) On the Influence of Active Element Content on the Thermal Conductivity and Thermal Expansion of Cu–X (X = Cr, B) Diamond Composites. Scripta Materialia, 57, 988-991.
http://dx.doi.org/10.1016/j.scriptamat.2007.08.007

[9]   He, J., Wang, X., Zhang, Y., Zhao, Y. and Zhang, H. (2015) Thermal Conductivity of Cu- Zr/Diamond Composites Produced by High Temperature-High Pressure Method. Composites Part B: Engineering, 68, 22-26.

[10]   He, J., Zhang, H., Zhang, Y., Zhao, Y. and Wang, X. (2014) Effect of Boron Addition on Interface Microstructure and Thermal Conductivity of Cu/Diamond Composites Produced by High Temperature-High Pressure Method. Physica Status Solidi A, 211, 587-594.
http://dx.doi.org/10.1002/pssa.201330237

[11]   Fan, Y.-M., Guo, H., Xu, J., Chu, K., Zhu, X.-X. and Jia, C.-C. (2011) Effects of Boron on the Microstructure and Thermal Properties of Cu/Diamond Composites Prepared by Pressure Infiltration. International Journal of Minerals, Metallurgy, and Materials, 18, 472-478.
http://dx.doi.org/10.1007/s12613-011-0465-2

[12]   Chen, H., Jia, C.C. and Li, S.J. (2011) Effect of Cr Addition and Processing Conditions on Interface Microstructure and Thermal Conductivity of Diamond/Cu Composite. Proceedings of the 18th International Conference on Composite Materials, CD-ROM.

[13]   Schubert, T., Trindade, B., Weißgärber, T. and Kieback, B. (2008) Interfacial Design of Cu-Based Composites Prepared by Powder Metallurgy for Heat Sink Applications. Materials Science and Engineering: A, 475, 39-44.
http://dx.doi.org/10.1016/j.msea.2006.12.146

[14]   Schubert, T., Ciupinski, L., Zielinski, W., Michalski, A., Weißgärber, T. and Kieback, B. (2008) Interfacial Characterization of Cu/Diamond Composites Prepared by Powder Metallurgy for Heat Sinkapplications. Scripta Materialia, 58, 263-266.
http://dx.doi.org/10.1016/j.scriptamat.2007.10.011

[15]   Chu, K., Jia, C., Guo, H. and Li, W. (2013) Microstructure and Thermal Conductivity of Cu–B/Diamond Composites. Journal of Composite Materials, 47, 2945-2953.
http://dx.doi.org/10.1177/0021998312460259

[16]   Mankowski, P., Dominiak, A., Domanski, R., Kruszewski, M.J. and Ciupinski, L. (2014) Thermal Conductivity Enhancement of Copper-Diamond Composites by Sintering with Chromium Additive. Journal of Thermal Analysis and Calorimetry, 116, 881-885.
http://dx.doi.org/10.1007/s10973-013-3604-3

[17]   Hall, H.T. (1960) Ultra-High-Pressure, High Temperature Apparutus: The “Belt”. Review of Scientific Instruments, 31, 125-131.
http://dx.doi.org/10.1063/1.1716907

[18]   Tamari, N., Tanaka, T., Tanaka, K., Kondo, I., Kawahara, M. and Tokita, M. (1995) Effect of Spark Plasma Sintering on Densification and Mechanical Properties of Silicon Carbide. Journal of the Ceramic Society of Japan, 103, 12-17.
http://dx.doi.org/10.2109/jcersj.103.740

[19]   Fu, Z., Chen, W., Xiao, H., Zhou, L., Zhu, D. and Yang, S. (2013) Fabrication and Properties of Nanocrystalline Co0.5FeNiCrTi0.5 High Entropy Alloy by MA-SPS Technique. Materials & Design, 44, 535-539.
http://dx.doi.org/10.1016/j.matdes.2012.08.048

[20]   Chen, H.S., Wang, W.X., Li, Y.L., Zhou, J., Nie, H.H. and Wu, Q.C. (2016) The Design, Microstructure and Mechanical Properties of B4C/6061Al Neutron Absorber Composites Fabricated by SPS. Materials & Design, 94, 360-367.
http://dx.doi.org/10.1016/j.matdes.2016.01.030

[21]   Mizuuchi, K., Sugioka, M., Itami, M., Kawahara, M., Lee, J.H. and Inoue, K. (2003) Effects of Processing Condition on Properties of Ti-Aluminides Reinforced Ti Matrix Composites Synthesized by Pulsed Current Hot Pressing (PCHP). Materials Science Forum, 426-432, 1757-1762.
http://dx.doi.org/10.4028/www.scientific.net/MSF.426-432.1757

[22]   Mizuuchi, K., Inoue, K., Sugioka, M., Itami, M. and Kawahara, M. (2004) Properties of In-Situ Ti-Aluminides Reinforced Ti Matrix Laminate Materials Synthesized by Pulsed Current Hot Pressing (PCHP). Materials Transactions, 45, 249-256.
http://dx.doi.org/10.2320/matertrans.45.249

[23]   Mizuuchi, K., Inoue, K., Hamada, K., Sugioka, M., Itami, M., Fukusumi, M. and Kawahara, M. (2004) Processing of TiNi SMA Fiber Reinforced AZ31 Mg Alloy Matrix Composite by Pulsed Current Hot Pressing. Materials Science and Engineering: A, 367, 343-349.
http://dx.doi.org/10.1016/j.msea.2003.10.286

[24]   Mizuuchi, K., Inoue, K., Sugioka, M., Itami, M., Lee, J. and Kawahara, M. (2006) Properties of Ni-Aluminides-Reinforced Ni-Matrix Laminates Synthesized by Pulsed-Current Hot Pressing. Materials Science and Engineering: A, 428, 169-174.
http://dx.doi.org/10.1016/j.msea.2006.04.113

[25]   Mizuuchi, K., Inoue, K., Sugioka, M., Itami, M., Kawahara, M. and Yamauchi, Y. (2006) Microstructure and Mechanical Properties of Boron-Fiber-Reinforced Titanium-Matrix Composites Produced by Pulsed Current Hot Pressing (PCHP). Materials Science and Engineering: A, 428, 175-179.
http://dx.doi.org/10.1016/j.msea.2006.04.112

[26]   Mizuuchi, K., Lee, J.H., Inoue, K., Sugioka, M., Itami, M. and Kawahara, M. (2008) High Speed Processing of Ni-Aluminides-Reinforced Ni-Matrix Composites by Pulsed-Current Hot Pressing (PCHP). Journal of Modern Physics B, 22, 1672-1679.
http://dx.doi.org/10.1142/S0217979208047249

[27]   Mizuuchi, K., Inoue, K., Agari, Y., Kawahara, M., Makino, Y. and Ito, M. (2014) Thermal properties of Al/β-SiC Particle Dispersed Al-Matrix Composites Fabricated in Continuous Solid-Liquid Co-Existent State by SPS. Journal of Metallurgical Engineering, 3, 59-68.
http://dx.doi.org/10.14355/me.2014.0302.01

[28]   Mizuuchi, K., Inoue, K., Agari, Y., Sugioka, M., Tanaka, M., Takeuchi, T., Tani, J., Kawahara, M., Makino, Y. and Ito, M. (2015) Bimodal and Monomodal Diamond Particle Effect on the Thermal Properties of Diamond-Particle-Dispersed Silver-Matrix Composite Fabricated by SPS. Journal of Metallurgical Engineering, 4, 1-12.
http://dx.doi.org/10.14355/me.2015.04.001

[29]   Mizuuchi, K., Inoue, K., Agari, Y., Sugioka, M., Tanaka, M., Takeuchi, T., Tani, J., Kawahara, M., Makino, Y. and Ito, M. (2016) Bimodal and Monomodalsic Particle Effect on the Thermal Properties of SiC Particle Dispersed Al-Matrix Composite Fabricated by SPS. Journal of Metallurgical Engineering, 5, 1-12.
http://dx.doi.org/10.14355/me.2016.05.001

[30]   Mizuuchi, K., Inoue, K., Agari, Y., Morisada, Y., Sugioka, M., Tanaka, M., Takeuchi, T., Tani, J., Kawahara, M. and Makino, Y. (2011) Processing of Diamond Particle Dispersed Aluminum Matrix Composites in Continuous Solid-Liquid Co-Existent State by SPS and Their Thermal Properties. Composites Part B: Engineering, 42, 825-831.
http://dx.doi.org/10.1016/j.compositesb.2011.01.012

[31]   Hasselman, D.P.H. and Jhonson, L.F. (1987) Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance. Journal of Composite Materials, 21, 508-5515.
http://dx.doi.org/10.1177/002199838702100602

[32]   Kelly, A. and Tyson, W.R. (1965) Fiber Strengthened Materials. In: Zackay, V.F., Ed., High Strength Materials, John Wiley & Sons Inc., New York, 578-583.

[33]   Turner, P.S. (1946) Thermal Expansion Stresses in Reinforced Plastics. NIST Journal of Research, 37, 239-250.
http://dx.doi.org/10.6028/jres.037.015

[34]   Kerner, E.H. (1956) The Elastic and Thermoelastic Properties of Composite Media. Proceedings of the Physical Society Section B, 69, 808-813.
http://dx.doi.org/10.1088/0370-1301/69/8/305

 
 
Top