Back
 Health  Vol.8 No.12 , September 2016
A Simulation Model for the Risk of Fetal Exposure Originated by the Zika Virus (VIZK)
Abstract: It is set and analyzed a simulation model based on non-linear ordinary differential equations to interpret the dynamics of the microcephaly incidence caused by the Zika virus in a risk group of pregnant women. This one is induced by a population of men in a reproductive age. Also, some parameters of the model were estimated for an average temperature of 23℃ and by using the adjusted functions from references [1] [2]. All system simulations were done with the Maple software and parameters values obtained from several sources (estimated, hypothetic, and form literature). It has been found that the application of contraceptive measures impacts the population of sexually active women. As result, the exposure to congenital abnormalities increases, particularly, microcephaly.
Cite this paper: Pizza, D. , Loaiza, A. , Arias, O. , Sossa, V. , Muñoz, C. , Osorio, S. , Contreras, H. , Montoya, J. , Patiño, G. , Contreras, I. , Perea, M. , Guerra, M. and García, J. (2016) A Simulation Model for the Risk of Fetal Exposure Originated by the Zika Virus (VIZK). Health, 8, 1178-1186. doi: 10.4236/health.2016.812121.
References

[1]   Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A. and Rocklov, J. (2014) Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential. PLOS ONE, 9, e89783.

[2]   Polwiang, S. (2015) The Seasonal Reproduction Number of Dengue Fever: Impacts of Climate to Transmission. Department of Mathematics, Faculty of Science, Silpakorn University, Thailandia.

[3]   Dick, G.W., Cocina, S.F. and Haddow, A.J. (1952) Zika aislamientos de virus y especificidad serológica. Transactions of The Royal Society of Tropical Medicine and Hygiene, 46, 509-520.
http://dx.doi.org/10.1016/0035-9203(52)90042-4

[4]   Dick, G.W. (1952) Patogenicidad del virus y propiedades fisicas Zika. Transactions of The Royal Society of Tropical Medicine and Hygiene, 46, 521-534.
http://dx.doi.org/10.1016/0035-9203(52)90043-6

[5]   Haddow, A.D., Schuh, A.J., Yasuda, C.Y., Kasper, M.R., Fleang, V., FHuy, R., Guzman, F.I., Tesh, R.B. and Weaver, S.C. (2012) Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage. PLOS Neglected Tropical Diseases, 6, e1477.

[6]   Faye, O., Faye, O., Diallo, D., Diallo, M., Weidmann, M. and Sail, A.A. (2013) Quantitative Real-Time PCR Detection of Zika Virus and Evaluation with Field-Caught Mosquitoes. Virology Journal, 10, 311.

[7]   Baronti, C., Piorkowski, G., Charrel, R.N., Boubis, L., Leparc-Goffart, I. and de Lamballerie, X. (2014) Complete coding sequence of zika virus from a French Polynesia outbreak in 2013. Genome Announcements, 2, pii: e00500-14.

[8]   Cabrera Pérez, Z. (2014) Epidemiologia del virus Zika. Universidad Veracruzana.

[9]   Heang, V., Yasuda, C.Y., Sovann, L., Haddow, A.D., Travassos da Rosa, A.P., Tesh, R.B., et al. (2012) Zika Virus Infection, Cambodia, 2010. Emerging Infectious Diseases, 18, 1-3.
http://dx.doi.org/10.3201/eid1802.111224

[10]   Kwong, J.C., Druce, J.D. and Leder, K. (2013) Zika Virus Infection Acquired during Brief Travel to Indonesia. The American Journal of Tropical Medicine and Hygiene, 89, 516-517.
http://dx.doi.org/10.4269/ajtmh.13-0029

[11]   Pouliot, S.H., Xiong, X., Harville, E., Paz-Soldan, V., Tomashek, K.M., Breart, G., et al. (2010) Maternal Dengue and Pregnancy Outcomes: A Systematic Review. Obstetrical & Gynecological Survey, 65, 107-118.

[12]   Wong, P.S., Li, M.Z., Chong, C.S., Ng, L.C. and Tan, C.H. (2013) Aedes (Stegomyia) albopictus (Skuse): A Potential Vector of Zika Virus in Singapore. PLOS Neglected Tropical Diseases, 7, e2348.

[13]   European Centre for Disease Prevention and Control (2015) Rapid Risk Assessment: Microcephalyin Brazil Potentially Linked to the Zika Virus Epidemic, 24 November 2015. ECDC, Stock-holm.

[14]   Penas, J.J. and And\'ujar, F.R. (2003) Alteraciones del perímetro craneal: Microcefalia y macrocefalia. Pediatr Integral, 7, 587-600.

[15]   Daozhou, G., Yijun, L., Daihai, H., Travis, C.P., Yangk, K., Gerardo, Ch. and Shigui, R. (2016) Prevention and Control of Zika as a Mosquito-Borne and Sexually Transmitted Disease: A Mathematical Modelling Analysis. Scientific Reports, 6, 28070.

[16]   Nishiura, H., Kinoshita, R., Mizumoto, K., Yasuda, Y. and Nah, K. (2016) Transmission Potential of Zika Virus Infection in the South Pacific. International Journal of Infectious Diseases, 45, 95-97.
http://dx.doi.org/10.1016/j.ijid.2016.02.017

[17]   Pizza, D.M.M., Loaiza, A.M., Montoya, J.F.A., Manrique, O.A., Sossa, V.A., Munoz, C.A.A., Raigosa, S.,Contreras, H.M., Contreras, I.P., Perea, M.E.C. and Enríquez, M.A. (2016) A Model for the Risk of Microcephaly Induced by the Zika Virus (ZIKV). Open Journal of Modelling and Simulation, 4, 109-117.
http://dx.doi.org/10.4236/ojmsi.2016.43010

[18]   Cauchemez, S., Besnard, M., Bompard, P., Dub, T., Guillemette-Artur, P., Eyrolle-Guignot, D., Salje, H., Van Kerkhove, M.D., Abadie, V., Garel, C., Fontanet, A. and Mallet, H.-P. (2016) Association between Zika Virus and Microcephaly in French Polynesia, 2013-15: A Retrospective Study. The Lancet, 387, 2125-2132.
http://dx.doi.org/10.1016/S0140-6736(16)00651-6

 
 
Top