An Alternative Proof of the Largest Number of Maximal Independent Sets in Connected Graphs Having at Most Two Cycles

Show more

References

[1] Ying, G.C., Meng, Y.Y., Sagan, B.E. and Vatter, V.R. (2006) Maximal Independent Sets in Graphs with at Most r Cycles. Journal of Graph Theory, 53, 270-282.

http://dx.doi.org/10.1002/jgt.20185

[2] Moon, J.W. and Moser, L. (1965) On Cliques in Graphs. Israel Journal of Mathematics, 3, 23-28.

http://dx.doi.org/10.1007/BF02760024

[3] Jou, M.J. and Chang, G.J. (1995) Survey on Conunting Maximal Independent Sets. In: Tangmance, S. and Schulz, E., Eds., Proceedings of the Second Asian Mathematical Conference, World Scientific, Singapore City, 265-275.

[4] Jin, Z. and Li, X. (2008) Graphs with the Second Largest Number of Maximal Independent Sets. Discrete Mathematics, 308, 5864-5870.

http://dx.doi.org/10.1016/j.disc.2007.10.032

[5] Prodinger, H. and Tichy, R.F. (1982) Fibonacci Numbers of Graphs. The Fibonacci Quarterly, 20, 16-21.

[6] Knopfmacher, A., Tichy, R.F., Wagner, S. and Ziegler, V. (2007) Graphs, Partitions and Fibonacci Numbers. Discrete Applied Mathematics, 155, 1175-1187.

http://dx.doi.org/10.1016/j.dam.2006.10.010

[7] Wagner, S.G. (2006) The Fibonacci Number of Generalized Petersen Graphs. The Fibonacci Quarterly, 44, 362-367.

[8] Jou, M.J. and Chang, G.J. (2002) Algorithmic Aspects of Counting Independent Sets. Ars Combinatoria, 65, 265-277.

[9] Jou, M.J. and Chang, G.J. (1997) Maximal Independent Sets in Graphs with at Most One Cycle. Discrete Applied Mathematics, 79, 67-73.

http://dx.doi.org/10.1016/S0166-218X(97)00033-4

[10] Sagan, B.E. and Vatter, V.R. (2006) Maximal and Maximum Independent Sets in Graphs with at Most r Cycles. Journal of Graph Theory, 53, 283-314.

http://dx.doi.org/10.1002/jgt.20186

[11] Jou, M.J. (2012) The Second Largest Number of Maximal Independent Sets in Connected Graphs with at Most One Cycle. Journal of Combinatorial Optimization, 24, 192-201.

http://dx.doi.org/10.1007/s10878-011-9376-4

[12] Hujter, M. and Tuza, Z. (1993) The Number of Maximal Independent Sets in Triangle-Free Graphs. SIAM: SIAM Journal on Discrete Mathematics, 6, 284-288.

http://dx.doi.org/10.1137/0406022

[13] Jou, M.J. (1991) The Number of Maximal Independent Sets in Graphs. Master Thesis, Department of Mathematics, National Central University, Taoyuan.