Back
 JAMP  Vol.4 No.8 , August 2016
Spline Solution for the Nonlinear Schrödinger Equation
Abstract: We develop an exponential spline interpolation method to solve the nonlinear Schrödinger equation. The truncation error and stability analysis of the method are investigated and the method is shown to be unconditionally stable. The conservation quantities are computed to determine the conservation properties of the problem. We will describe the method and present numerical tests by two problems. The numerical simulations results demonstrate the well performance of the proposed method.
Cite this paper: Lin, B. (2016) Spline Solution for the Nonlinear Schrödinger Equation. Journal of Applied Mathematics and Physics, 4, 1600-1609. doi: 10.4236/jamp.2016.48170.
References

[1]   Infeld, E. (1984) Nonlinear Waves: From Hydrodynamics to Plasma Theory, Advances in Nonlinear Waves. Pitman, Boston.

[2]   Nore, C., Abid, A. and Brachet, M. (1996) Small-Scale Structures in Three-Dimensional Hydrodynamics and Magnetohyrodynamic Turbulence. Springer, Berlin.

[3]   Agrawal, G.P. (2001) Nonlinear Fibei Optics. 3rd Edition, Academic Press, San Diego.

[4]   Fordy, A.P. (1990) Soliton Theory: A Survey of Results. Manchester University Press, Manchester.

[5]   Bruneau, C.H., Di Menza, L. and Lerhner, T. (1999) Numerical Resolution of Some Nonlinear Schrödinger-Like Equation in Plasmas. Numerical Methods for Partial Differential Equations, 15, 672-696.
http://dx.doi.org/10.1002/(SICI)1098-2426(199911)15:6<672::AID-NUM5>3.0.CO;2-J

[6]   Bang, O., Christiansen, P.L., Rasmussen, K. and Gaididei, Y.B. (1995) The Role of Nonlinearity in Modeling Energy Transfer in Schibe Aggregates. In: Nonlinear Excitations in Biomolecules, Springer, Berlin, 317-336.
http://dx.doi.org/10.1007/978-3-662-08994-1_24

[7]   Ferreira, M.F., Faco, M.V., Latas, S.V. and Sousa, M.H. (2005) Optical Solitons in Fibers for Communication Systems. Fiber and Integrated Optics, 24, 287-313.
http://dx.doi.org/10.1080/01468030590923019

[8]   Zhang, J.F., Dai, C.Q., Yang, Q. and Zhu, J.M. (2005) Variable-Coefficient F-Expansion Method and Its Application to Nonlinear Schrödinger Equation. Optics Communications, 252, 408-421.
http://dx.doi.org/10.1016/j.optcom.2005.04.043

[9]   Zhang, J.L., Li, B.A. and Wang, M.L. (2009) Soliton Propagation in a System with Variable Coefficients. Chaos Solitons Fractals, 39, 858-865.
http://dx.doi.org/10.1016/j.chaos.2007.01.116

[10]   Taha, T.R. and Ablowitz, M.J. (1984) Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations. II. Numerical, Nonlinear Schrödinger Equation. Journal of Computational Physics, 55, 203-230.
http://dx.doi.org/10.1016/0021-9991(84)90003-2

[11]   Zhang, L. (2005) A High Accurate and Conservative Finite Difference Scheme for Nonlinear Schrödinger Equation. Acta Mathematicae Applicatae Sinica, 28, 178-186.

[12]   Duan, A. and Rong, F. (2013) A Numerical Scheme for Nonlinear Schrödinger Equation by MQ Quasi-Interpolatin. Engineering Analysis with Boundary Elements, 37, 89-94.
http://dx.doi.org/10.1016/j.enganabound.2012.08.006

[13]   Dag, I. (1999) A Quadratic B-Spline Finite Element Method for Solving Nonlinear Schrödinger Equation. Computer Methods in Applied Mechanics and Engineering, 174, 247-258.
http://dx.doi.org/10.1016/S0045-7825(98)00257-6

[14]   Dehghan, M. and Taleei, A. (2010) A Compact Split-Step Finite Difference Method for Solving the Nonlinear Schrödinger Equations with Constant and Variable Coefficients. Computer Physics Communications, 181, 43-51.
http://dx.doi.org/10.1016/j.cpc.2009.08.015

[15]   Dehghan, M. and Taleei, A. (2011) A Chebyshev Pseudospectral Multidomain Method for the Soliton Solution of Coupled Nonlinear Schrödinger Equations. Computer Physics Communications, 182, 2519-2529.
http://dx.doi.org/10.1016/j.cpc.2011.07.009

[16]   Mohammadi, R. (2014) An Exponential Spline Solution of Nonlinear Schrödinger Equations with Constant and Variable Coefficients. Computer Physics Communications, 185, 917-932.
http://dx.doi.org/10.1016/j.cpc.2013.12.015

[17]   Lin, B. (2013) Parametric Cubic Spline Method for the Solution of the Nonlinear Schrödinger Equation. Computer Physics Communications, 184, 60-65.
http://dx.doi.org/10.1016/j.cpc.2012.08.010

[18]   Lin, B. (2015) Septic Spline Function Method for the Solution of the Nonlinear Schrödinger Equation. Applicable Analysis, 94, 279-293.
http://dx.doi.org/10.1080/00036811.2014.890709

[19]   Wang, S.S. and Zhang, L. (2011) Split-Step Orthogonal Spline Collocation Methods for Nonlinear Schrödinger Equations in One, Two, and Three Dimensions. Applied Mathematics and Computation, 218, 1903-1916.
http://dx.doi.org/10.1016/j.amc.2011.07.002

[20]   Mohebbi, A. and Dehghan, M. (2009) The Use of Compact Boundary Value Method for the Solution of Two-Dimensional Schrödinger Equation. Journal of Computational and Applied Mathematics, 225, 124-134.
http://dx.doi.org/10.1016/j.cam.2008.07.008

[21]   Ismail, M.S. and Taha, T.R. (2007) A Linearly Implicit Conservative Scheme for the Coupled Nonlinear Schrodinger Equation. Mathematics and Computers in Simulation, 74, 302-311.
http://dx.doi.org/10.1016/j.matcom.2006.10.020

 
 
Top