ENG  Vol.8 No.8 , August 2016
Shear Failure Criterion and Constant Volume Ring Shear Testing Method for Clayey Soil
Abstract: This paper discusses the shortcomings of the traditional Coulomb shear criterion and the direct shear-box testing method used for clayey soil and presents a modified shear criterion that considers the elasto-plastic behavior of cohesive soil. This modified approach involves direct shear testing under constant volume, a method that has been developed by the author. A modified ring shear apparatus and the theory behind the shear criterion and its implication for slope stability analysis are then discussed and the results of investigated tuffitic clayey sediments are presented. The results show that the presented new shear criterion does not consider the cohesion as material constant, but rather it depends on the void ratio. In this case, the stress state and the consolidation status and thus the elasto-plastic behavior of the clayey soil are considered.
Cite this paper: Azzam, R. (2016) Shear Failure Criterion and Constant Volume Ring Shear Testing Method for Clayey Soil. Engineering, 8, 545-560. doi: 10.4236/eng.2016.88051.

[1]   Coulomb, C.A. (1776) Essai sur une application des regles de maximis et minimis quelques problemes de statique, relatits a l’architecture. Memoires de Mathematique de l’Academie Royale de Science 7, Paris.

[2]   Skempton, A.W. (1949) Alexandre Collin, 1808-1890: A Note on His Pioneer Work in Soil Mechanics. Geotechnique, 1, 216.

[3]   Krey, H. (1927) Rutschgefahrliche und flieende Bodenarten. Baut, 5, 485.

[4]   Tiedeman, B. (1932) Die Bedeutung des Bodens im Bauwesen. In: Blank, E., Ed., Handbuch der Bodenlehre, Band 10, Springer Verlag, Berlin.

[5]   Hvorslev, M.J. (1936) Conditions of Failure for Remoulded Cohesive Soil. Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge, 22-26 June 1936, 51-53.

[6]   Hvorslev, M.J. (1937) Ueber die Festigkeitseigenschaf ten gestörter bindiger Boden. Ingenioervidensk. Ingenieurvidenskabelige Skrifter, Copenhagen.

[7]   Ohde, J. (1949) Vorbelastung und Vorspannung des Baugrundes und ihr Einfluxt auf Setzung, Festigkeit und Gleitwiderstand. Baut, 26, 129, 163.

[8]   Skempton, L.W. (1951) The Measurement of the Shear Strength of Soil. CMSS, 2, 90.

[9]   Hardin, B.O. (1978) The Nature of Stress-Strain Behaviour for Soils. Proceedings of Earthquake Engineering and Soil Dynamics, ASCE, Pasadena, 19-21 June 1978, 3-89.

[10]   Mitchell, J.K. and Mc Connell, J.R. (1965) Some Characteristics of the Elastic and Plastic Deformation of Clay on Initial Loading. Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, 5, 313-317.

[11]   Azzam, R. (1986) Modified Ring Shear Apparatus. Technical Note Internal Report. (Unpublished)

[12]   Schofield, A. and Wroth, P.I. (1968) Critical State Soil Mechanics. Mc Craw-Hill, London.

[13]   Yao, Y., Gao, Z., Zhao, J. and Wan, Z. (2012) Modified UH Model: Constitutive Modeling of Over-Consolidated Clays Based on a Parabolic Hvorslev Envelop. Journal of Geotechnical and Geoenvironmental Engineering, 138, 860-868.

[14]   Bishop, A.I., Green, G.E., Garga, V.K., Andersen, A. and Brown, J.D. (1971) A New Ring Shear Apparatus and Its Application to the Measurement of Residual Strength. Geotechnique, 21, 273-328.

[15]   Azzam, R. (1984) Experiinentelle und theoretische Untersuchungen zum Quell, Kompressions und Scherfestigkeitsverhalten tuffitischer Sediniente und deren Bedeutung für die Standsicherheitsanalyse tiefer Einschnittsbbschungen. Mitteilung zur Ing und Hydrogeologie, Aachen, Heft 18.

[16]   Bishop, A.W. (1971) The Influence of Progressive Failure on the Choice of the Method of Stability Analysis. Geotechnique, 21, 168-172.

[17]   Skempton, A.W. (1964) Long Term Stability of Clay Slopes. Geotechnique, 14, 77-107.