Back
 IJMPCERO  Vol.5 No.3 , August 2016
Effectiveness of a Patient-Specific Immobilization and Positioning System to Limit Interfractional Translation and Rotation Setup Errors in Radiotherapy of Prostate Cancers
Abstract: Objective: To evaluate the effectiveness of a patient-specific immobilization and positioning device in prostate radiotherapy. Methods: Eighty patients were immobilized and positioned by a patient-specific device. Prostate translations and rotations were estimated from daily cone beam computed tomography scans using a contour-based approach assisted by auto-registration and quantified by the group mean GM, systematic Σ and random σ' errors. Dosimetric impacts of residual prostate rotations where the translation errors were corrected were evaluated by robustness plan analysis. Results: Using the patient-specific immobilization alone without online image-guidance, the GM, Σ and σ' of the prostate translations were 0.8, 1.7, and 1.5 mm (left-right; LR), 0.8, 2.1, and 1.9 mm (superior-inferior; SI), and 0.5, 1.7 and 1.5 mm (anterior-posterior; AP), while for the prostate rotations they were 0.0°, 0.6°, and 0.7° (pitch), 0.2°, 0.5°, and 0.6° (roll), and 0.2°, 0.5°, and 0.6° (yaw). The resulting van Herk’s margin was 5.8 (LR), 7.3 (SI) and 5.8 (AP) mm. With adaptive online image-guidance based on estimates from the first 5 fractions, Σ were reduced by 0.7 - 1.2 mm for the prostate translations, resulting in a margin reduction by 2 - 3.5 mm. Changes of Σ and σ' in the prostate rotations were insignificant regardless of translation corrections. Dosimetric impacts of residual rotation errors were negligible if a 2 mm margin was applied. Conclusions: Our patient-specific immobilization system can effectively limit the prostate translations and rotations, which is important without 6D treatment couches or using ultrasound image-guidance without rotational corrections.
Cite this paper: Law, G. , Leung, R. , Lee, F. , Luk, H. , Lee, K. , Wong, F. , Wong, M. , Cheung, S. , Lee, V. , Mui, W. and Chan, M. (2016) Effectiveness of a Patient-Specific Immobilization and Positioning System to Limit Interfractional Translation and Rotation Setup Errors in Radiotherapy of Prostate Cancers. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 5, 184-195. doi: 10.4236/ijmpcero.2016.53020.
References

[1]   Beckendorf, V., Guerif, S., Le Prisé, E., Cosset, J.-M., Bougnoux, A., Chauvet, B., et al. (2011) 70 Gy versus 80 Gy in Localized Prostate Cancer: 5-Year Results of GETUG 06 Randomized Trial. International Journal of Radiation Oncology*Biology*Physics, 80, 1056-1063.
http://dx.doi.org/10.1016/j.ijrobp.2010.03.049

[2]   Arcangeli, G., Saracino, B., Gomellini, S., Petrongari, M.G., Arcangeli, S., Sentinelli, S., et al. (2010) A Prospective Phase III Randomized Trial of Hypofractionation versus Conventional Fractionation in Patients with High-Risk Prostate Cancer. International Journal of Radiation Oncology*Biology*Physics, 78, 11-18.
http://dx.doi.org/10.1016/j.ijrobp.2009.07.1691

[3]   Sanpaolo, P., Barbieri, V. and Genovesi, D. (2014) Biologically Effective Dose and Definitive Radiation Treatment for Localized Prostate Cancer. Strahlentherapie und Onkologie, 190, 732-738.
http://dx.doi.org/10.1007/s00066-014-0642-0

[4]   Madsen, B.L., His, R.A., Pham, H.T., Fowler, J.F., Esagui, L. and Corman, J. (2007) Stereotactic Hypofractionated Accurate Radiotherapy of the Prostate (SHARP), 33.5 Gy in Five Fractions for Localized Disease: First Clinical Trial Results. International Journal of Radiation Oncology*Biology*Physics, 67, 1099-1105.
http://dx.doi.org/10.1016/j.ijrobp.2006.10.050

[5]   Leborgne, F. and Fowler, J. (2008) Acute Toxicity after Hypofractionated Conformal Radiotherapy for Localized Prostate Cancer: Nonrandomized Contemporary Comparison with Standard Fractionation. International Journal of Radiation Oncology*Biology*Physics, 72, 770-776.e1.
http://dx.doi.org/10.1016/j.ijrobp.2008.01.023

[6]   Bylund, K.C., Bayouth, J.E., Smith, M.C., Hass, A.C., Bhatia, S.K. and Buatti, J.M. (2008) Analysis of Interfraction Prostate Motion Using Megavoltage Cone Beam Computed Tomography. International Journal of Radiation Oncology*Biology*Physics, 72, 949-956.
http://dx.doi.org/10.1016/j.ijrobp.2008.07.002

[7]   Snir, J.A., Battista, J.J., Bauman, G. and Yartsev, S. (2011) Evaluation of Inter-Fraction Prostate Motion Using Kilovoltage Cone Beam Computed Tomography during Radiotherapy. Clinical Oncology, 23, 625-631.
http://dx.doi.org/10.1016/j.clon.2011.03.007

[8]   Graf, R., Boehmer, D., Budach, V. and Wust, P. (2012) Interfraction Rotation of the Prostate as Evaluated by Kilovoltage X-Ray Fiducial Marker Imaging in Intensity-Modulated Radiotherapy of Localized Prostate Cancer. Medical Dosimetry, 37, 396-400.
http://dx.doi.org/10.1016/j.meddos.2012.02.006

[9]   van de Water, S., Valli, L., Aluwini, S., Lanconelli, N., Heijmen, B. and Hoogeman, M. (2014) Intrafraction Prostate Translations and Rotations during Hypofractionated Robotic Radiation Surgery: Dosimetric Impact of Correction Strategies and Margins. International Journal of Radiation Oncology*Biology*Physics, 88, 1154-1160.
http://dx.doi.org/10.1016/j.ijrobp.2013.12.045

[10]   Lin, Y., Liu, T., Yang, W., Yang, X. and Khan, M.K. (2013) The Non-Gaussian Nature of Prostate Motion Based on Real-Time Intrafraction Tracking. International Journal of Radiation Oncology*Biology*Physics, 87, 363-369.
http://dx.doi.org/10.1016/j.ijrobp.2013.05.019

[11]   Bohrer, M., Schröder, P., Welzel, G., Wertz, H., Lohr, F., Wenz, F., et al. (2008) Reduced Rectal Toxicity with Ultrasound-Based Image Guided Radiotherapy Using BATTM (B-Mode Acquisition and Targeting System) for Prostate Cancer. Strahlentherapie und Onkologie, 184, 674-678.
http://dx.doi.org/10.1007/s00066-008-1837-z

[12]   Ricardi, U., Franco, P., Munoz, F., Levis, M., Fiandra, C., Guarneri, A., et al. (2015) Three-Dimensional Ultrasound-Based Image-Guided Hypofractionated Radiotherapy for Intermediate-Risk Prostate Cancer: Results of a Consecutive Case Series. Cancer Investigation, 33, 23-28.
http://dx.doi.org/10.3109/07357907.2014.988343

[13]   Rijkhorst, E.-J., van Herk, M., Lebesque, J.V. and Sonke, J.-J. (2007) Strategy for Online Correction of Rotational Organ Motion for Intensity-Modulated Radiotherapy of Prostate Cancer. International Journal of Radiation Oncology*Biology*Physics, 69, 1608-1617.
http://dx.doi.org/10.1016/j.ijrobp.2007.08.042

[14]   Yue, N.J., Knisely, J.P.S., Song, H. and Nath, R. (2005) A Method to Implement Full Six-Degree Target Shift Corrections for Rigid Body in Image-Guided Radiotherapy. Medical Physics, 33, 21-31.
http://dx.doi.org/10.1118/1.2138009

[15]   Deutschmann, H., Kametriser, G., Steininger, P., Scherer, P., Schöller, H., Gaisberger, C., et al. (2012) First Clinical Release of an Online, Adaptive, Aperture-Based Image-Guided Radiotherapy Strategy in Intensity-Modulated Radiotherapy to Correct for Inter- and Intrafractional Rotations of the Prostate. International Journal of Radiation Oncology*Biology*Physics, 83, 1624-1632.
http://dx.doi.org/10.1016/j.ijrobp.2011.10.009

[16]   Lips, I.M., van der Heide, U.A., Kotte, A.N.T.J., van Vulpen, M. and Bel, A. (2009) Effect of Translational and Rotational Errors on Complex Dose Distributions with Off-Line and On-Line Position Verification. International Journal of Radiation Oncology, Biology, Physics, 74, 1600-1608.
http://dx.doi.org/10.1016/j.ijrobp.2009.02.056

[17]   Shang, Q., Sheplan Olsen, L.J., Stephans, K., Tendulkar, R. and Xia, P. (2013) Prostate Rotation Detected from Implanted Markers Can Affect Dose Coverage and Cannot Be Simply Dismissed. Journal of Applied Clinical Medical Physic, 14, 177-191.

[18]   White, P., Yee, C., Shan, L., Chung, L., Man, N. and Cheung, Y. (2014) A Comparison of Two Systems of Patient Immobilization for Prostate Radiotherapy. Radiation Oncology, 9, 29.
http://dx.doi.org/10.1186/1748-717X-9-29

[19]   Malone, S., Szanto, J., Perry, G., Gerig, L., Manion, S., Dahrouge, S., et al. (2000) A Prospective Comparison of Three Systems of Patient Immobilization for Prostate Radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 48, 657-665.
http://dx.doi.org/10.1016/S0360-3016(00)00682-9

[20]   Melanccon, A.D., Kudchadker, R.J., Amos, R., Johanson, J., Zhang, Y., Yu, Z.H., et al. (2013) Patient-Specific and Generic Immobilization Devices for Prostate Radiotherapy. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 2, 125-132.
http://dx.doi.org/10.4236/ijmpcero.2013.24017

[21]   Lee, E., Yuen, K., Mui, W., Law, G.M.L., Lui, C., Chan, M.K.H., et al. (2013) Salvage Radiotherapy to the Prostatic Fossa Using Volumetric-Modulated Arc Therapy: Early Results. Hong Kong Journal of Radiology, 16, 191-197.
http://dx.doi.org/10.12809/hkjr1313173

[22]   Van Herk, M. (2004) Errors and Margins in Radiotherapy. Seminars in Radiation Oncology, 14, 52-64.
http://dx.doi.org/10.1053/j.semradonc.2003.10.003

[23]   Hoogeman, M.S., van Herk, M., de Bois, J. and Lebesque, J.V. (2005) Strategies to Reduce the Systematic Error Due to Tumor and Rectum Motion in Radiotherapy of Prostate Cancer. Radiotherapy and Oncology, 74, 177-185.
http://dx.doi.org/10.1016/j.radonc.2004.12.010

[24]   Deasy, J.O., Blanco, A.I. and Clark, V.H. (2003) CERR: A Computational Environment for Radiotherapy Research. Medical Physics, 30, 979-985.
http://dx.doi.org/10.1118/1.1568978

[25]   Söhn, M., Yan, D., Liang, J., Meldolesi, E., Vargas, C. and Alber, M. (2007) Incidence of Late Rectal Bleeding in High-Dose Conformal Radiotherapy of Prostate Cancer Using Equivalent Uniform Dose-Based and Dose-Volume-Based NTCP Models. International Journal of Radiation Oncology, Biology, Physics, 67, 1066-1073.
http://dx.doi.org/10.1016/j.ijrobp.2006.10.014

[26]   Owen, R., Kron, T., Foroudi, F., Milner, A., Cox, J. and Duchesne, G. (2011) Interfraction Prostate Rotation Determined from In-Room Computerized Tomography Images. Medical Dosimetry, 36, 188-194.
http://dx.doi.org/10.1016/j.meddos.2010.03.002

[27]   Wong, J.R., Gao, Z., Uematsu, M., Merrick, S., Machernis, N.P., Chen, T., et al. (2008) Interfractional Prostate Shifts: Review of 1870 Computed Tomography (CT) Scans Obtained during Image-Guided Radiotherapy Using Ct-on-Rails for the Treatment of Prostate Cancer. International Journal of Radiation Oncology, Biology, Physics, 72, 1396-1401.
http://dx.doi.org/10.1016/j.ijrobp.2008.03.045

[28]   Mayyas, E., Chetty, I.J., Chetvertkov, M., Wen, N., Neicu, T., Nurushev, T., et al. (2013) Evaluation of Multiple Image-Based Modalities for Image-Guided Radiation Therapy (IGRT) of Prostate Carcinoma: A Prospective Study. Medical Physics, 40, Article ID: 041707.
http://dx.doi.org/10.1118/1.4794502

[29]   Langsenlehner, T., Döller, C., Winkler, P., Gallé, G. and Kapp, K.S. (2013) Impact of Inter- and Intrafraction Deviations and Residual Set-Up Errors on PTV Margins. Strahlentherapie und Onkologie, 189, 321-328.
http://dx.doi.org/10.1007/s00066-012-0303-0

[30]   Kukołowicz, P., Kukołowicz, H. and Tyburska, I. (2015) Dependence of the Safe Rectum Dose on the CTV-PTV Margin Size and Treatment Technique. Reports of Practical Oncology and Radiotherapy, 20, 198-203.
http://dx.doi.org/10.1016/j.rpor.2014.12.004

[31]   Zhong, Q., Gao, H., Li, G., Xiu, X., Wu, Q., Li, M., et al. (2014) Significance of Image Guidance to Clinical Outcomes for Localized Prostate Cancer. BioMed Research International, 2014, Article ID: 860639.
http://dx.doi.org/10.1155/2014/860639

[32]   Chu, W., Loblaw, D., Chan, K., Morton, G., Choo, R., Szumacher, E., et al. (2015) Long-Term Results of a Study Using Individualized Planning Target Volumes for Hypofractionated Intensity-Modulated Radiotherapy Boost for Prostate Cancer. Radiation Oncology, 10, 95.
http://dx.doi.org/10.1186/s13014-015-0400-1

 
 
Top