Back
 IJMPCERO  Vol.5 No.3 , August 2016
In Vivo Dosimetry of an Anthropomorphic Phantom Using the RADPOS for Proton Beam Therapy
Abstract: The radiation positioning system (RADPOS) combines an electromagnetic positioning sensor with metal oxide semiconductor field-effect transistor (MOSFET) dosimetry, enabling simultaneous online measurement of dose and spatial position. Evaluation points can be determined with the RADPOS. The accuracy of in-vivo proton dosimetry was evaluated using the RADPOS and an anthropomorphic head and neck phantom. MOSFET doses measured at 3D positions obtained with the RADPOS were compared with treatment plan values calculated using a simplified Monte Carlo (SMC) method. MOSFET responses, which depend strongly on the linear energy transfer of the proton beam, were corrected using the SMC method. The SMC method was used to calculate only dose deposition determined by the experimental depth-dose distribution and lateral displacement of protons due to the multiple scattering effect in materials and incident angle. This method thus enabled rapid calculation of accurate doses in even heterogeneities. In vivo dosimetry using the RADPOS, as well as MOSFET doses, agreed with SMC calculations in the range of ?3.0% to 8.3%. Most measurement errors occurred because of uncertainties in dose calculations due to the 1-mm position error. The results indicate that uncertainties in measurement position can be controlled successfully within 1 mm when using the RADPOS with in-vivo proton dosimetry.
Cite this paper: Kohno, R. , Yamaguchi, H. , Motegi, K. , Hotta, K. , Nishioka, S. and Akimoto, T. (2016) In Vivo Dosimetry of an Anthropomorphic Phantom Using the RADPOS for Proton Beam Therapy. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 5, 177-183. doi: 10.4236/ijmpcero.2016.53019.
References

[1]   Report of TG 62 of the Radiation Therapy Committee (2005) Diode in Vivo Dosimetry for Patients Receiving External Beam Radiation Therapy, AAPM Report No. 87, Medical Physics Publishing, Madison.

[2]   Beddar, A.S., Mackie, T.R. and Attix, F.H. (1992) Water-Equivalent Plastic Scintillation Detectors for High-Energy Beam Dosimetry: I. Physical Characteristics and Theoretical Consideration. Physics in Medicine and Biology, 37, 1883-1900.
http://dx.doi.org/10.1088/0031-9155/37/10/006

[3]   Van Dam, J. and Marinello, G. (2006) Methods for In Vivo Dosimetry in External Radiotherapy, ESTRO Booklet No. 1. 2nd Edition, European Society for Radiation Oncology, ESTRO, Brussels.

[4]   Soubra, M., Cygler, J. and Mackay, G. (1994) Evaluation of a Dual Metal Oxide-Silicon Semiconductor Field Effect Transistor Detector as Radiation Dosimeter. Medical Physics, 21, 567-572.
http://dx.doi.org/10.1118/1.597314

[5]   Marcie, S., Charpiot, E., Bensadoun, R.J., Ciais, G., Herault, J., Costa, A. and Gerard, J.P. (2005) In Vivo Measurements with MOSFET Detectors in Oropharynx and Nasopharynx Intensity-Modulated Radiation Therapy. International Journal of Radiation Oncology*Biology*Physics, 61, 1603-1606.
http://dx.doi.org/10.1016/j.ijrobp.2004.12.034

[6]   Beyer, G.P., Scarantino, C.W., Prestidge, B.R., Sadeghi, A.G., Anscher, M.S., Miften, M., Carrea, T.B., Sims, M. and Black, R.D. (2007) Technical Evaluation of Radiation Dose Delivered in Prostate Cancer Patients as Measured by an Implantable MOSFET Dosimeter. International Journal of Radiation Oncology*Biology*Physics, 69, 925-935.
http://dx.doi.org/10.1016/j.ijrobp.2007.06.065

[7]   Bloemen-van Gurp, E.J., Mijnheer, B.J., Verschueren, T.A. and Lambin, P. (2007) Total Body Irradiation, toward Optima Individual Delivery: Dose Evaluation with Metal Oxide Field Effect Transistors, Thermoluminescence Detectors and a Treatment Planning System. International Journal of Radiation Oncology*Biology*Physics, 69, 1297-1304.
http://dx.doi.org/10.1016/j.ijrobp.2007.07.2334

[8]   Parodi, K., Paganetti, H., Shih, H.A., Michaud, S., Loeffler, J.S., DeLaney, T.F., Liebsch, N.J., Munzenrider, J.E., Fischman, A.J., Knopf, A. and Bortfeld, T. (2007) Patient Study of In Vivo Verification of Beam Delivery and Range, Using Positron Emission Tomography and Computed Tomography Imaging after Proton Therapy. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 68, 920-934.
http://dx.doi.org/10.1016/j.ijrobp.2007.01.063

[9]   Kohno, R., Hotta, K., Matsubara, K., Nishioka, S., Matsuura, T. and Kawashima, M. (2012) In Vivo Proton Dosimetry Using a MOSFET Detector in an Anthropomorphic Phantom with Tissue Inhomogeneity. Journal of Applied Clinical Medical Physics, 13, 159-167.

[10]   Cherpak, A., Ding, W., Hallil, A. and Cygler, J.E. (2009) Ecvaluation of a Novel 4D in Vivo Dosimetry System. Medical Physics, 36, 1672-1679.
http://dx.doi.org/10.1118/1.3100264

[11]   Cherpak, A., Serban, M., Seuntjens, J. and Cygler, J.E. (2011) 4D Dose-Position Verification in Radiation Therapy Using the RADPOS System in a Deformable Lung Phantom. Medical Physics, 38, 179-187.
http://dx.doi.org/10.1118/1.3515461

[12]   Cherpak, A., Cygler, J.E., Andrusyk, S., Pantarotto, J., Macrae, R. and Perry, G. (2012) Clinical Use of a Novel In Vivo 4D Monitoring System for Simultaneous Patient Motion and Dose Measurements. Radiotherapy and Oncology, 102, 290-296.
http://dx.doi.org/10.1016/j.radonc.2011.08.021

[13]   Kohno, R., Yamaguchi, H., Motegi, K., Tanaka, F., Akita, T., Nagata, Y., Hotta, K., Miyagishi, T., Nishioka, S., Dohmae, T. and Akimoto, T. (2015) Position Verification of the RADPOS 4-D in Vivo Dosimetry System. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 4, 318-325.
http://dx.doi.org/10.4236/ijmpcero.2015.44038

[14]   Nishio, T., Kataoka, S., Tachibana, M., Matsumura, K., Uzawa, N., Saito, H., Sasano, T., Yamaguchi, M. and Ogino, T. (2006) Development of a Simple Control System for Uniform Proton Dose Distribution in a Dual-Ring Double Scattering Method. Physics in Medicine and Biology, 51, 1249-1260.
http://dx.doi.org/10.1088/0031-9155/51/5/014

[15]   Kohno, R., Nishio, T., Miyagishi, T., Matsumura, K., Saito, H., Uzawa, N., Sasano, T., Nakamura, T. and Ogino, T. (2006) Evaluation of Daily Quality Assurance for Proton Therapy at National Cancer Center Hospital East. Japanese Journal of Medical Physics, 26, 153-162.

[16]   Kohno, R., Nishio, T., Miyagishi, T., Hirano, E., Hotta, K., Kawashima, M. and Ogino, T. (2006) Experimental Evaluation of a MOSFET Dosimeter for Proton Dose Measurements. Physics in Medicine and Biology, 51, 6077-6086.
http://dx.doi.org/10.1088/0031-9155/51/23/009

[17]   Kohno, R., Sakae, T., Takada, Y., Matsumoto, K., Matsuda, H., Nohtomi, A., Terunuma, T. and Tsunashima, Y. (2002) Simplified Monte Carlo Dose Calculation for Therapeutic Proton Beams. Japan Journal of Applied Physics, 41, L294-L297.
http://dx.doi.org/10.1143/jjap.41.l294

[18]   Kohno, R., Takada, Y., Sakae, T., Terunuma, T., Matsumoto, K., Nohtomi, A. and Matsuda, H. (2003) Experimental Evaluation for Validity of Simplified Monte Carlo Method in Proton Dose Calculations. Physics in Medicine and Biology, 48, 1277-1288.
http://dx.doi.org/10.1088/0031-9155/48/10/303

[19]   Hotta, K., Kohno, R., Takada, Y., Hara, Y., Tansho, R., Himukai, T., Kameoka, S., Matsuura, T., Nishio, T. and Ogino, T. (2010) Improved Dose-Calculation Accuracy in Proton Treatment Planning Using a Simplified Monte Carlo Method Verified with Three-Dimensional Measurements in an Anthropomorphic Phantom. Physics in Medicine and Biology, 55, 3545-3556.
http://dx.doi.org/10.1088/0031-9155/55/12/018

[20]   Kohno, R., Hotta, K., Nishioka, S., Matsubara, K., Tansho, R. and Suzuki, T. (2011) Clinical Implementation of a GPU-Based Simplified Monte Carlo Method for a Treatment Planning System of Proton Beam Therapy. Physics in Medicine and Biology, 56, N287-N294.
http://dx.doi.org/10.1088/0031-9155/56/22/n03

[21]   Kohno, R., Hotta, K., Matsuura, T., Matsubara, K., Nishioka, S., Nishio, T., Kawashima, M. and Ogino, T. (2011) Proton Dose Distribution Measurements Using a MOSFET Detector with a Simple Dose-Weighted Correction Method for LET Effects. Journal of Applied Clinical Medical Physics, 12, 326-337.

 
 
Top