JCT  Vol.2 No.3 , August 2011
Synergistic Anti-Tumor Effect of Cisplatin When Combined with an Anti-Src Kinase Integrin-Based Peptide
Abstract: Background: It is known that active Src kinase promotes survival of ovarian cancer cell lines and inhibition of c-Src has been shown to restore sensitivity of drug-resistant human ovarian cancer cells to cisplatin. In this study we examined the effects of a 10 mer peptide on proliferation of human colon and ovarian cancer cells when used alone and in combination with cisplatin. Materials and Methods: A 10 mer peptide, RSKAKNPLYR, derived from a 15 mer ERK2 binding sequence present on the cytoplasmic domain of the β6 integrin subunit was tested for its effect on proliferation of HT29 colon cancer cells under serum-free conditions by means of the MTT assay. Cell proliferation studies to examine the effects of cisplatin combined with peptide were conducted in serum-containing medium using the 10 mer peptide fused to a hydrophobic signal peptide sequence. Drug combination studies were performed on HT29 cells and a cisplatin-resistant cell line (ADDP) derived from an ovarian cancer cell line A2780. The effects of peptides on Src kinase activity were assessed in a cell-free in vitro kinase assay. Results: The 10 mer peptide was as effective as the 15 mer parent compound at inhibiting proliferation of HT29 cells. Exposure of HT29 and ADDP cells to a combination of cisplatin and the fusion peptide resulted in synergistic inhibition of cell growth. Both the 10 mer peptide alone and when fused to the signal peptide sequence inhibited Src kinase activity. Conclusion: Our findings raise the possibility of combination therapy comprising peptide and cisplatin for cisplatin-resistant ovarian cancers and other cancers that are high expressors of c-Src.
Cite this paper: nullM. Agrez, M. Garg, D. Dorahy and S. Ackland, "Synergistic Anti-Tumor Effect of Cisplatin When Combined with an Anti-Src Kinase Integrin-Based Peptide," Journal of Cancer Therapy, Vol. 2 No. 3, 2011, pp. 295-301. doi: 10.4236/jct.2011.23039.

[1]   K. J. Scanlon, M. Kashai-Sabet, T. Tone and T. Funato, “Cisplatin Resistance in Human Cancers,” Pharmacology and Therapeutics, Vol. 52, No. 3, 1991, pp. 385-406. doi:10.1016/0163-7258(91)90033-I

[2]   S. Huerta, D. M. Harris, A. Jazirehi, B. Bonavida, D. Elashoff, E. H. Livingston, et al., “Gene Expression Profile of Metastatic Colon Cancer Cells Resistant to Cisplatin-Induced Apoptosis,” International Journal of Oncology, Vol. 22, No. 3, 2003, pp. 663-670.

[3]   T. Chen, Y. Pengetnze and C. C. Taylor, “Src Inhibition Enhances Paclitaxel Cytotoxicity in Ovarian Cancer Cells by Caspase-9-independent Activation of Caspase-3,” Molecular Cancer Therapeutics, Vol. 4, No. 2, 2005, pp. 217-224.

[4]   T. C. Windham, N. U. Parikh, D. R. Siwak, J. M. Summy, D. J. McConkey, A. J. Kraker, et al., “Src Activation Regulates Anoikis in Human Colon Tumor Cell Lines,” Oncogene, Vol. 21, No. 51, 2002, pp. 7797-7807. doi:10.1038/sj.onc.1205989

[5]   T. G. Bivona, I. P. De Castro, I. M. Ahearn, T. M. Grana, V. K. Chin, P. J. Lockyer, et al., “Phospholipase Cgamma Activates Ras on the Golgi Apparatus by Means of RasGRP1,” Nature, Vol. 424, 2003, pp. 694-698. doi:10.1038/nature01806

[6]   S. C. Dehm and K. Bonham, “SRC Gene Expression in Human Cancer: The Role of Transcriptional Activation,” Biochemistry and Cell Biology, Vol. 82, No. 2, 2004, pp. 263-274. doi:10.1139/o03-077

[7]   J. B. Bolen, A. Veillett, A. M. Schwartz, V. DeSeau and N. Rosen, “Activation of pp60c-src Protein Kinase Activity in Human Colon Carcinoma,” Proceedings of the National Academy of Science USA, Vol. 84, No. 8, 1987, pp. 2251-2255. doi:10.1073/pnas.84.8.2251

[8]   M. S. Talamonti, M. S. Roh, S. A. Curley and G. E. Gallick, “Increase in Activity and Level of pp60c-src in Progressive Stages of Human Colorectal Cancer,” Journal of Clinical Investigation, Vol. 91, No. 1, 1993, pp. 53-60. doi:10.1172/JCI116200

[9]   P. M. Termulen, S. A. Curley, M. S. Talamonti, M. H. Saboorian and G. E. Gallick, “Site-Specific Differences in pp60c-src Activity in Human Colorectal Metastases,” Journal of Surgical Research, Vol. 54, No. 4, 1993, pp. 293-298. doi:10.1006/jsre.1993.1046

[10]   H. Aligayer, D. D. Boyd, M. M. Heiss, E. K. Abdalla, S. A. Curley and G. E. Gallick, “Activation of Src Kinase in Primary Colorectal Carcinoma: An Indicator of Poor Clinical Prognosis,” Cancer, Vol. 94, No. 2, 2002, pp. 344-351. doi:10.1002/cncr.10221

[11]   J. R. Weiner, T. C. Windham, V. C. Estrella, N. U. Parikh, P. F. Thall, M. T. Deavers, et al., “Activated SRC Protein Tyrosine Kinase is Overexpressed in Late-Stage Human Ovarian Cancers,” Gynecologic Oncology, Vol. 88, No. 1, 2003, pp. 73-79. doi:10.1006/gyno.2002.6851

[12]   R. O. Hynes, “Integrins: Versatility, Modulation, and Signaling in Cell Adhesion,” Cell, Vol. 69, No. 1, 1992, pp. 11-25. doi:10.1016/0092-8674(92)90115-S

[13]   E. G. Arias-Salgado, S. Lizano, S. Sarkar, J. S. Brugge, M. H. Ginsberg and S. J. Shattil, “Src Kinase Activation by Direct Interaction with the Integrin β Cytoplasmic Domain,” Proceedings of the National Academy of Science USA, Vol. 100, No. 23, 2003, pp. 13298-13302. doi:10.1073/pnas.2336149100

[14]   N. Ahmed, F. Pansino, R. Clyde, P. Murthi, M. A. Quinn, G. E. Rice, et al., “Overexpression of αvβ6 Integrin in Serous Epithelial Ovarian Cancer Regulates Extracellular Matrix Degradation via the Plasminogen Activation Cascade,” Carcinogenesis, Vol. 23, No. 2, 2001, pp. 237-244. doi:10.1093/carcin/23.2.237

[15]   R. C. Bates, D. I. Bellovin, C. Brown, E. Maynard, B. Wu, H. Kawakatsu, et al., “Transcriptional Activation of Integrin β6 during the Epithelial-Mesenchymal Transition Defines a Novel Prognostic Indicator of Agressive Colon Carcinoma,” Journal of Clinical Investigation, Vol. 115, No. 2, 2005, pp. 339-347.

[16]   N. Ahmed, J. Niu, D. J. Dorahy, X. Gu, S. Andrews, C. J. Meldrum, et al., “Direct Integrin αvβ6 Binding: Implications for Tumour Growth,” Oncogene, Vol. 21, No. 9, 2002, pp. 1370-1380. doi:10.1038/sj.onc.1205286

[17]   M. V. Agrez and N. Ahmed, “MAP Kinase Integrin-Binding Domain,” US Patent No. 7422883, 2008.

[18]   Y. Lu, J. Han and K. J. Scanlon, “Biochemical and Molecular Properties of Cisplatin-Resistant A2780 Cells Grown in Folinic Acid,” Journal of Biological Chemistry, Vol. 263, No. 10, 1988, pp. 4891-4894.

[19]   C. J. A. van Moorsel, H. M. Pinedo, H. M. Veerman, G. Bergman, A. M. Kuiper, J. B. Vermoken, et al., “Mechanisms of Synergism between Cisplatin and Gemcitabine in Ovarian and Non-Small-Cell Lung Cancer Cell Lines,” British Journal of Cancer, Vol. 80, 1999, pp. 981-990. doi:10.1038/sj.bjc.6690452

[20]   Y. Z. Lin, S. Y. Yao, R. A. Veach, T. R. Torgerson and J. Hawiger, “Inhibition of Nuclear Translocation of Transcription Factor NF-kappa B by a Synthetic Peptide Containing a Cell Membrane-Permeable Motif and Nuclear Localization Sequence,” Journal of Biological Chemistry, Vol. 270, 1995, pp. 14255-14258. doi:10.1074/jbc.270.24.14255

[21]   D. Teoh, T. A. Ayeni, J. M. Rubatt, D. J. Adams, L. Grace, M. D. Starr, et al., “Dasatinib (BMS-35482) Has Synergistic Activity with Paclitaxel and Carboplatin in Ovarian Cancer Cells,” Gynecologic Oncology, Vol. 121, No. 1, 2011, pp. 187-192. doi:10.1016/j.ygyno.2010.11.017

[22]   M. V. Agrez and D. J. Dorahy, “Inhibition of Multiple Activation Pathways,” International Patent Application, No. PCT AU2010/000203, 2010.

[23]   R. A. Veach, D. Liu, S. Yao, Y. Chen, X. Y. Liu, S. Downs, et al., “Receptor/Transporter-Independent Targeting of Functional Peptides across Plasma Membranes,” Journal of Biological Chemistry, Vol. 279, 2004, pp. 11425-11431. doi:10.1074/jbc.M311089200

[24]   R. J. Parker, A. Eastman, F. Bostick-Bruton and E. Reed, “Acquired Cisplatin Resistance in Human Ovarian Cancer Cells is Associated with Enhanced Repair of Cisplatin-DNA Lesions and Reduced Drug Accumulation,” Journal of Clinical Investigation, Vol. 87, No. 3, 1991, pp. 772-777. doi:10.1172/JCI115080

[25]   J. Helleman, H. Burger, I. H. Hamelers, A. W. Boersma, A. I. de Kroon, G. Stoter, et al., “Impaired Cisplatin Influx in an A2780 Mutant Cell Line: Evidence for a Putative, Cis-configuration-specific, Platinum Influx Transporter,” Cancer Biology Therapy, Vol. 5, No. 8, 2006, pp. 943-949. doi:10.4161/cbt.5.8.2876

[26]   D. Roberts, J. Schick, S. Conway, S. Biade, P. B. Laub, J. P. Stevenson, et al., “Identification of Genes Associated with Platinum Drug Sensitivity and Resistance in Human Ovarian Cancer Cells,” British Journal of Cancer, Vol. 92, 2005, pp. 1149-1158. doi:10.1038/sj.bjc.6602447

[27]   S. Lee, E.-J. Choi, C. Jin and D.-H. Kim, “Activation of PI3K/Akt Pathway by PTEN Reduction and PIK3CA mRNA Amplification Contributes to Cisplatin Resistance in an Ovarian Cancer Cell Line,” Gynecologic Oncology, Vol. 97, No. 1, 2005, pp. 26-34. doi:10.1016/j.ygyno.2004.11.051

[28]   C.-T. Lin, H.-C. Lai, H.-Y. Lee, W.-H. Lin, C.-C. Chang, T.-Y. Chu, et al., “Valproic Acid Resensitizes Cisplatin- Resistant Ovarian Cancer Cells,” Cancer Science, Vol. 99, No. 6, 2008, pp. 1218-1226. doi:10.1111/j.1349-7006.2008.00793.x

[29]   A. Brozovic and M. Osmak, “Activation of Mitogen-Activated Protein Kinases by Cisplatin and Their Role in Cisplatin-Resistance,” Cancer Letters, Vol. 251, No. 1, 2007, pp. 1-16. doi:10.1016/j.canlet.2006.10.007

[30]   W. Cui, E. M. Yazlovitskaya, M. S. Mayo, J. C. Pelling and D. L. Persons, “Cisplatin-Induced Response of c-Jun N-Terminal Kinase 1 and Extracellular Signal-Regulated Protein Kinases 1 and 2 in a Series of Cisplatin-Resistant Ovarian Carcinoma Cell Lines,” Molecular Carcinogenesis, Vol. 29, No. 4, 2000, pp. 219-228. doi:10.1002/1098-2744(200012)29:4<219::AID-MC1004>3.0.CO;2-D

[31]   M. P. Playford and M. D. Schaller, “The Interplay between Src and Integrins in Normal and Tumor Biology,” Oncogene, Vol. 23, 2004, pp. 7928-7946. doi:10.1038/sj.onc.1208080

[32]   K. M. Darcy and R. J. Schilder, “Relevant Molecular Markers and Targets,” Gynecologic Oncology, Vol. 103, No. 2, 2005, pp. 6-13. doi:10.1016/j.ygyno.2006.08.018