Back
 AiM  Vol.6 No.9 , August 2016
Effects of Plant Growth Promoting Rhizobacteria (PGPR) on In Vitro Bread Wheat (Triticum aestivum L.) Growth Parameters and Biological Control Mechanisms
Abstract: Three endemic plants rhizosphere (Astragalus gombo Coss. & Dur., Daucus sahariensis Murb., Ononis angustissima Lam.), were used for actinomycetes isolation. Ninety-three (93) isolates have been screened to evaluate their antagonistic properties against phytopathogenic microorganisms and to determine their biocontrol properties against Fusarium culmorum, especially responsible for several cereal diseases like font’s seedlings, rust, and burn of ears. Four (04) isolates (D2, D5, D8, and AST1) have been in vitro tested to determine PGPR effect and biocontrol characters of bread wheat (Triticum aestivum L.), Hidhab (HD) variety cultivated in the Murashigue and Skoog (MS) culture medium. The aim of this study is the evaluation of antagonistic isolates of pathogenic fungi F. culmorum, without and within commercial fungicide (Tebuconazole, 60 g/l) solution. Our results showed clearly that these isolates have a significant effect on seed germination and seedling growth. However, results argue that these actinomycetes isolates show a very interesting activity compared to the commercial fungicide. As a result, these bacteria isolates can be used as biocontrol agents against Fusarium wilt disease of wheat, which have a beneficial effect on growth parameters.
Cite this paper: Laid, B. , Kamel, K. , Mouloud, G. , Manel, S. , Walid, S. , Amar, B. , Hamenna, B. and Faiçal, B. (2016) Effects of Plant Growth Promoting Rhizobacteria (PGPR) on In Vitro Bread Wheat (Triticum aestivum L.) Growth Parameters and Biological Control Mechanisms. Advances in Microbiology, 6, 677-690. doi: 10.4236/aim.2016.69067.
References

[1]   Charmet, G. (2011) Wheat Domestication: Lessons for the Future. Comptes Rendus Biologies, 334, 212-220.
http://dx.doi.org/10.1016/j.crvi.2010.12.013

[2]   Nelson, P.E., Toussoun, T.A. and Marasa, W.F.O. (1983) Fusarium Species: An Illustrated Manual for Identification. Pennsylvania State University Press, University Park, 206 p.

[3]   Wagacha, J.M. and Muthomi, J.W. (2007) Fusarium culmorum: Infection Process, Mechanisms of Mycotoxin Production and Their Role in Pathogenesis in Wheat. Crop Protection, 26, 877-885.
http://dx.doi.org/10.1016/j.cropro.2006.09.003

[4]   Windels, C.E. (2000) Economic and Social Impacts of Fusarium Head Blight (FHB): Changing Farms and Rural Communities in the Northern Great Plains. Phytopathology, 90, 17-21.
http://dx.doi.org/10.1094/PHYTO.2000.90.1.17

[5]   Tshen, J.S.M. (1985) Biological Control of Plant Diseases by Microorganisms. Chinese Bioscience, 26, 33-39.

[6]   Alloway, B.J. and Ayres, D.C. (1997) Chemical Principles of Environmental Pollution. 2nd Edition, Blackie Academic Professional, Chapman and Hall, London, 381 p.

[7]   Keith, J.B. and Derek, W.H. (2007) Fungicide Resistance in Crop Pathogens: How Can It Be Managed? Fungicide Resistance Action Committee 2007, 2nd Edition, 60 p.

[8]   Prapagdee, B., Kuekulvong, C. and Mongkolsuk, S. (2008) Antifungal Potential of Extracellular Metabolites Produced by Streptomyces hygroscopicus against Phytopathogenic Fungi. International Journal of Biological Science, 4, 330-337.
http://dx.doi.org/10.7150/ijbs.4.330

[9]   Xiao, K., Kinkel, L.L. and Samac, D.A. (2002) Biological Control of Phytophthora Root Rots on Alfalfa and Soybean with Streptomyces. Biological Control, 23, 285-295.
http://dx.doi.org/10.1006/bcon.2001.1015

[10]   Bressan, W. (2003) Biological Control of Maize Seed Pathogenic Fungi by Use of Actinomycetes. BioControl, 48, 233-240.
http://dx.doi.org/10.1023/A:1022673226324

[11]   Gundliffe, E. (2006) Antibiotic Production by Actinomycetes: The Janus Faces of Regulation. Journal of Indian Microbiology and Biotechnology, 33, 500-506.
http://dx.doi.org/10.1007/s10295-006-0083-6

[12]   Berdy, J. (2005) Bioactive Microbial Metabolites. Journal of Antibiotic (Tokyo), 58, 1-26.
http://dx.doi.org/10.1038/ja.2005.1

[13]   Pochon, J. and Tardieux, P. (1962) Analytical Techniques of Soil Microbiology St-Mandé: Edition de la Tourtourelle, 111 p.

[14]   Kitouni, M. (2007) Isolation of Bacteria Producing Actinomycetes Antibiotics from Extreme Ecosystems. Molecular Identification of Active Strains and Preliminary Characterization of the Developed Substances. Applied Microbiology Thesis, Mentouri Constantine University, Algeria, 170 p.

[15]   Shirling, E.B. and Gottlieb, D. (1966) Methods for Characterization of Streptomyces Species. International Journal of Systematic Bacteriology, 16, 313-340.
http://dx.doi.org/10.1099/00207713-16-3-313

[16]   Williams, S.T., Goodfellow, M. and Alderson, G. (1989) Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Williams S.T., Sharpe, M.E. and Holt, J.G., Eds., Bergey’s Manual of Systematic Bacteriology, Vol. 4, Williams and Wilkins, Baltimore, 2452-2492.

[17]   Jacobson, E., Grauville, W.C. and Fogs, C.E. (1958) Color Harmony Manual. 4th Edition, Container Corporation of America, Chicago.

[18]   Khamna, S., Yokota, A. and Lumyong, S. (2009) Actinobacteria Isolated from Medicinal Plant Rhizosphere Soils: Diversity and Screening of Antifungal Compounds, iNdole-3-Acetic Acid, and Siderophore Production. World Journal of Microbiology and Biotechnology, 25, 649-655.
http://dx.doi.org/10.1007/s11274-008-9933-x

[19]   Kaur, T., Sharma, D., Kaur, A. and Manhas, R.K. (2013) Antagonistic and Plant Growth Promoting Activities of Endophytic and Soil Actinomycetes. Archives of Phytopathology and Plant Protection, 46, 1756-1768.
http://dx.doi.org/10.1080/03235408.2013.777169

[20]   Murashigue, T. and Skoog, F. (1962) A Revised Medium for Rapid Growth and Bio-Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 437-496.
http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x

[21]   Soares, A.C.F., Sousa, C.D.S., Garrido, M.D.S., Perez, J.O. and Santos de Almeida, N. (2006) Soil Streptomycetes with In Vitro Activity against the Yam Pathogens Curvularia eragrostis and Colletotrichum gloeosporioides. Brazilian Journal of Microbiology, 37, 456-461.
http://dx.doi.org/10.1590/S1517-83822006000400010

[22]   Williams, L.E. and Willis G.M. (1962) Agar Ring Method for In Vitro Studies of Fungistatic Activity. Phytopathology. 52, 368-369.

[23]   Aghighi, S., Shahidi Bonjar, G.H., Rawashdeh, R., Batayneh, S. and Saadoun, I. (2004) The First Report of Antifungal Spectra of Activity of Iranian Actinomycetes Isolates against Alternaria solani, Alternaria alternate, Fusarium solani, Phytophthora megasperm, Verticillium dahlia and Saccharomyces cerevisiae. Asian Journal of Plant Sciences, 4, 463-471.

[24]   Badji, B., Riba, A., Mathieu, F., Lebrihi, A. and Sabaou, N. (2005) Antifungal Activity of a Saharan Actinomadura Strains against Various Pathogenic and Toxicogenic Fungi. Journal of Medical Mycology, 15, 211-219.
http://dx.doi.org/10.1016/j.mycmed.2005.07.001

[25]   Barakat, M., Ouhdouch, Y., Oufdou, K.H. and Bealieu, C. (2002) Characterization of Rhizospheric Soil Streptomyces from Moroccan Habitats, and Their Antimicrobial Activities. Word Journal of Microbiology Biotechnology, 18, 49-54.
http://dx.doi.org/10.1023/A:1013966407890

[26]   Yekkour, A., Meklat, A., Bijani, C., Toumatia, O., Errakhi, R., Lebrihi, A., Mathieu, F., Zitouni, A. and Sabaou N. (2015) A Novel Hydroxamic Acid-Containing Antibiotic Produced by a Saharan Soil-Living Streptomyces Strain. Letters in Applied Microbiology, 60, 589-596.
http://dx.doi.org/10.1111/lam.12412

[27]   Muller, G., Matzanke, B.F. and Raymond, K.N. (1984) Iron Transport in Streptomyces pilosus Mediated by Ferrichrome Siderophores, Rhodotorulic Acid, and Enantiorhodotorulic Acid. Journal of Bacteriology, 160, 313-318.

[28]   Muller, G. and Raymond K.N. (1984) Specificity and Mechanism of Ferrioxamine-Mediated Iron Transport in Streptomyces pilosus. Journal of Bacteriology, 160, 304-312.

[29]   Tokala, R.K., Strap, J.L., Jung, C.M., Crawford D.L., Salove M.H., Deobald L.A., Bailey J.F. and Morra M.J. (2002) Novel Plant-Microbe Rhizosphere Interaction Involving Streptomyces lyrics WYEC108 and the Pea Plant (Pisum sativum). Applied and Environmental Microbiology, 68, 108-113.
http://dx.doi.org/10.1128/AEM.68.5.2161-2171.2002

[30]   Franceschi, V.R., Krokene, P., Christiansen, E. and Krekling, T. (2005) Anatomical and Chemical Defenses of Conifer bark against Bark Beetles and Other Pests. New Phytologist, 167, 353-375.
http://dx.doi.org/10.1111/j.1469-8137.2005.01436.x

[31]   Vassilev, N., Vassileva, M. and Nikolaeva, I. (2006) Simultaneous P-Solubilizing and Biocontrol Activity of Microorganisms: Potentials and Future Trends. Applied Microbiology Biotechnology, 71, 137-144.
http://dx.doi.org/10.1007/s00253-006-0380-z

[32]   Prévost, K., Couture, G., Shipley, B., Brzezinski, R. and Beaulieu, C. (2006) Effect of Chitosan and a Biocontrol Streptomycete on Field and Potato Tuber Bacterial Communities. BioControl, 51, 533-546.
http://dx.doi.org/10.1007/s10526-005-4240-z

[33]   Lehr, N.-A, Schrey, S.D., Bauer, R., Hampp, R. and Tarkka, M.T. (2007) Suppression of Plant Defense Response by a Mycorrhiza Helper Bacterium. New Phytologist, 174, 892-903.
http://dx.doi.org/10.1111/j.1469-8137.2007.02021.x

[34]   Kloepper, J.W., Leong, J., Teintze, M. and Schroth, M.N. (1980) Pseudomonas Siderophores: A Mechanism Is Explaining Disease-Suppressive Soils. Current Microbiology, 4, 317-320.
http://dx.doi.org/10.1007/BF02602840

[35]   Li, Q., Jiang, Y., Ning, P., Zheng, L., Huang, J., Li, G., Jiang, D. and Hsiang, T. (2011) Suppression of Magnaporthe oryza by Culture Filtrates of Streptomyces globisporus JK-1. Biological Control, 58, 139-148.
http://dx.doi.org/10.1016/j.biocontrol.2011.04.013

[36]   Souagui, Y., Tritsch, D., Grosdemange-Billiard, C. and Kecha, M. (2015) Optimization of Antifungal Production by an Alkaliphilic and Halotolerant Actinomycetes, Streptomyces sp. SY-BS5, Using Response Surface Methodology. Journal of Medical Mycology, 25, 108-115.
http://dx.doi.org/10.1016/j.mycmed.2014.12.004

[37]   Spaepen, S. and Vanderleyden, J. (2011) Auxin and Plant-Microbe Interactions. Cold Spring Harbor Perspectives Biology, 3, Article ID: a001438.
http://dx.doi.org/10.1101/cshperspect.a001438

[38]   Al-Askar, A.A., Rashad, Y.M., Hafez, E.E., Abdulkhair, W.M., Baka, Z.A. and Ghoneem, K.M. (2015) Characterization of Alkaline Protease Produced by Streptomyces griseorubens E44G and Its Possibility for Controlling Rhizoctonia Root Rot Disease of Corn. Biotechnology & Biotechnological Equipment, 29, 457-462.
http://dx.doi.org/10.1080/13102818.2015.1015446

[39]   Sabaratnam, S. and Traquair, J.A. (2015) Mechanism of Antagonism by Streptomyces grisecarneous (Strain Di944) against Fungal Pathogens of Greenhouse-Grown Tomato Transplants. Canadian Journal of Plant Pathology, 37, 197-211.
http://dx.doi.org/10.1080/07060661.2015.1039062

[40]   Khaleeq, M.I. and Khan, S.M. (1993) Efficacy of Seed Dressing Fungicides on Germination and Grain Yield of Wheat (Triticum aestivum L.). Pakistan Journal of Agricultural Sciences, 30, 212-216.

[41]   Harris, D., Pattan, A.K., Gothkar, P., Joshi, A., Chivasa, W. and Nyamudeza, P. (2001) On-Farm Seed Priming Using Participatory Methods to Revive and Refine a Key Technology. Agricultural Systems, 69, 151-164.
http://dx.doi.org/10.1016/S0308-521X(01)00023-3

[42]   Ghadbane, M., Harzallah, D., Jaouadi, B., Ibn Larbi, A. and Belhadj, H. (2013) Purification and Biochemical Characterization of a Highly Thermostable Bacteriocin Isolated from Brevibacillus brevis Strain GM100. Bioscience, Biotechnology, and Biochemistry, 77, 151-160.
http://dx.doi.org/10.1271/bbb.120681

[43]   Ghadbane, M., Harzallah, D., Jaouadi, B., Ibn Larbi, A. and Belhadj, H. (2013) New Bacteriocin from Bacillus clausii Strain GM17: Purification, Characterization, and Biological Activity. Applied Biochemistry and Biotechnology, 171, 2186-2200.
http://dx.doi.org/10.1007/s12010-013-0489-3

[44]   Gupta, G., Parihar, S.S., Ahirwar, N.K., Snehi, S.K. and Singh, V. (2015) Plant Growth Promoting Rhizobacteria (PGPR): Current and Prospects for Development of Sustainable Agriculture. Journal of Microbial and Biochemical Technology, 7, 96-102.

[45]   Eccleston, K.L., Brooks, P.R. and Kurtboke, D. (2010) Assessment of the Role of Local Strawberry Rhizosphere-Associated Streptomycetes on the Bacterially-Induced Growth and Botrytis cinerea Infection Resistance of the Fruit. Sustainability, 2, 3831-3845.
http://dx.doi.org/10.3390/su2123831

[46]   Patil, H.J., Srivastava, A.K., Singh, D.P., Chaudhari, B.L. and Arora, D.K. (2011) Actinomycetes Mediated Biochemical Responses in Tomato (Solanum lycopersicum) Enhances Protection against Rhizoctonia solani. Crop Protection, 30, 1269-1273.
http://dx.doi.org/10.1016/j.cropro.2011.04.008

[47]   Cuesta, G., García-de-la-Fuente, R., Abad, M. and Fornes, F. (2012) Isolation and Identification of Actinomycetes from a Compost-Amended Soil with Potential as Biocontrol Agents. Journal of Environmental Management, 95, 280-284.
http://dx.doi.org/10.1016/j.jenvman.2010.11.023

[48]   Sastrahidayat, I.R., Djauhari, S., Prasetya, B. and Saleh, N. (2011) Biocontrol of Damping-Off Disease (Sclerotium rolfii SACC.) Using Actinomycetes and Fungi on Soybean and Impact to Crop Production and Microorganism Diversity in Rhizosphere Zone. International Journal of Academic Research, 3, 114-119.

[49]   Fialho de Oliveira, M., Germano da Silva, M. and Van Der Sand, S.T. (2010) Anti-Phytopathogen Potential of Endophytic Actinobacteria Isolated from Tomato Plants (Lycopersicon esculentum) in Southern Brazil and Characterization of Streptomyces sp. R18(6), a Potential Biocontrol Agent. Research in Microbiology, 161, 565-572.
http://dx.doi.org/10.1016/j.resmic.2010.05.008

[50]   Hamdali, H., Hafidi, M., Virolle, M. and Ouhdouch, Y. (2008) Growth Promotion and Protection against Damping-Off of Wheat by Two Rock Phosphate Solubilizing Actinomycetes in Phosphor-Deficient Soil under Greenhouse Conditions. Applied Soil Ecology, 40, 510-517.
http://dx.doi.org/10.1016/j.apsoil.2008.08.001

[51]   Cao, L., Qiu, Z., You, J., Tan, H. and Zhou, S. (2005) Isolation and Characterization of Endophytic Streptomycetes Antagonists of Fusarium Wilt Pathogen from Surface-Sterilized Banana Roots. FEMS Microbiology Letters, 247, 147-152.
http://dx.doi.org/10.1016/j.femsle.2005.05.006

[52]   Jayasinghe, B.A.T.D. and Parkinson, D. (2008) Actinomycetes as Antagonists of Litter Decomposer Fungi. Applied Soil Ecology, 38, 109-118.
http://dx.doi.org/10.1016/j.apsoil.2007.09.005

[53]   Errakhi, R., Bouteau, F., Lebrihi, A. and Barakate, M. (2007) Evidence of biological control Capacities of Streptomyces sp., against Sclerotium, rolfsii Responsible for Damping-Off Disease in Sugar Beet (Beta vulgaris L.) World Journal of Microbiology and Biotechnology, 23, 1503-1509.
http://dx.doi.org/10.1007/s11274-007-9394-7

[54]   Singh, A K. and Chhatpar, H.S. (2011) Combined Use of Streptomyces sp. A6 and Chemical Fungicides against Fusarium Wilt of Cajanus cajan May Reduce the Dosage of Fungicides Required in the Field. Crop Protection, 30, 770-775.
http://dx.doi.org/10.1016/j.cropro.2011.03.015

 
 
Top