[1] Ramachandran, G., Ramakrishnan, C. and Sasisekharan, V. (1963) Stereochemistry of polypeptide chain configuration. J. Mol. Biol., 7: 95-99.
[2] Cordes, F., Bright, J.and Sansom, M. (2002) Proline induced distortions of transmembrane helices. J. Mol. Biol., 323: 951-960.
[3] Anfinsen, C.B. (1973) Principles that govern the folding of protein chains. Science, 181(96), 223-230.
[4] Rose, G.D. (1978) Prediction of chain turns in globular proteins on a hydrophobic basis. Nature, 272, 586-590.
[5] Qian, H. (1996) Prediction of _-helices in proteins based on thermodynamic parameters from solution chemistry. J. Mol. Biol., 256, 663-666.
[6] Mohapatra, P., Khamari, A. and Raval, M. (2004) A method for structural analysis of α-helices of membrane proteins J. Mol. Model., 10: 393-398,.
[7] Heijne, G. V. (1991)Proline kinks in transmembrane α-helices J. Mol. Biol., 218: 499-503.
[8] Swindells, M.B. (1995) A procedure for the automatic determination of hydrophobic cores in protein structures. Protein Science, 4, 93-102.
[9] Desjarlais, J.R. and Handel, T.M. (1995) De novo design of the hydrophobic cores of proteins. Protein Science, 4, 2006-2018.
[10] Rost, B. and Sander, C. (1994) Combining evolutionary information and neural networks to predict secondary structure. PROTEINS: Structure, Function, and Genetics, 19, 55-72.
[11] Kyte, J. and Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 157, 105-132.
[12] Cornette, J.L., Cease, K.B., Margalit, H., Spouge, J.L., Berzofsky, J.A. and DeLisi, C. (1987) Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J. Mol. Biol., 195, 659-685.
[13] Liò, P. (2003) Wavelets in bioinformatics and computational biology: state of art and perspectives,” Bioinformatics, Vol. 19(1), pp. 2-9.
[14] Hirakawa, H. and Kuhara, S. (1997) Prediction of hydrophobic cores of proteins using wavelet analysis. Genome Inform. Ser Workshop Genome Inform, 8: 61-70,.
[15] Hirakawa, H., Muta, S. and Kuhara, S. (1999) The hydrophobic cores of proteins predicted by wavelet analysis. Bioinformatics, 15: 141-148.
[16] de Trad, C., Fang, Q. and Cosic, I. (2002) Protein sequence comparision based on the wavelet transform approach. Protein Eng., 15: 193-203.
[17] Murray, K. B., Gorse, D. and Thornton, J.(2002) Wavelet transforms for the characterization and detection of repeating motifs. J. Mol. Biol., 316: 341-363.
[18] Yu, B., Meng, X. H. and Liu, H. J. (2006) Prediction of transmembrane helical segments in transmembrane proteins based on wavelet transform Journal of Shanghai University (English Edition), Vol. 10, 2006, pp. 308-318.
[19] Bin, Y. and Yan, Z. (2010) On the Prediction of Transmembrane Helical Segments in Membrane Protein International Journal of Mathematical and Computer Sciences, 6:4, pp. 192-195.
[20] Kuntz, I.D. (1972) Protein folding. J. Am. Chem. Soc., 94, 4009-4012.
[21] Qian, H. (1996) Prediction of α-helices in proteins based on thermodynamic parameters from solution chemistry. J. Mol. Biol., 256, 663-666.
[22] S. K. Mitra (2006) Digital signal processing Tata McGraw-Hill.
[23] Oppenheim, A. V. and Schafer, R. W. (1999) Discrete-Time Signal Processing Prentice-Hall, Inc., NJ.