OJMIP  Vol.1 No.2 , August 2011
Physiological and pathophysiological roles of the electrogenic Na+-HCO3 cotransporter NBCe1
ABSTRACT
The electrogenic Na+-HCO3 cotransporter NBCe1 encoded by SLC4A4 gene plays essential roles in the regulation of intracellular/extracellular pH. Three NBCe1 variants are thought to mediate distinct physiological roles with different modes of transport stoichiometry. Homozygous inactivating mutations in NBCe1 cause the isolated proximal renal tubular acidosis (pRTA) invariably associated with ocular abnormalities. Functional analyses indicate that more than 50% reduction in NBCe1 activity may be required to induce severe acidemia. Some of the pRTA- related NBCe1 mutations, which show defective me-mbrane expression in mammalian cells, are also associated with migraine. Dysregulation of local pH in brain due to the loss of NBCe1 activity in astrocytes may underlie this association. Two types of NBCe1 deficient animals, NBCe1 knockout and W516X knockin mice, have been reported. Both of them show severe acidemia and early lethality unless they are treated with alkali. In isolated renal proximal tubules from W516X knockin mice, both NBCe1 activity and the rate of bicarbonate absorption are severely reduced, confirming the essential role of NBCe1 in bicarbonate absorption from this nephron segment. In this review, we summarize the recent data about physiological and pathophysiological roles of NBCe1 in health and diseases.

Cite this paper
nullSeki, G. , Yamada, H. , Horita, S. , Suzuki, M. , Yamazaki, O. , Paesschen, W. , Yang, S. and Lin, S. (2011) Physiological and pathophysiological roles of the electrogenic Na+-HCO3 cotransporter NBCe1. Open Journal of Molecular and Integrative Physiology, 1, 9-16. doi: 10.4236/ojmip.2011.12002.
References
[1]   Romero, M.F. and Boron, W.F. (1999) Electrogenic Na+/ cotransporters: Cloning and physiology. Annual Review of Physiology, 61, 699-723. doi:10.1146/annurev.physiol.61.1.699

[2]   Igarashi, T., Inatomi, J., Sekine, T., Cha, S.H., Kanai, Y., et al. (1999) Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities. Nature Genetics, 23, 264-266. doi:10.1038/15440

[3]   Boron, W.F. (2006) Acid-base transport by the renal proximal tubule. Journal of the American Society of Nephrology, 17, 2368-2382. doi:10.1681/ASN.2006060620

[4]   Ishiguro, H., Steward, M.C., Lindsay, A.R. and Case, R.M. (1996) Accumulation of intracellular HCO3? by Na+-HCO3– cotransport in interlobular ducts from guinea-pig pancreas. The Journal of Physiology, 495(Part 1), 169-178.

[5]   Usui, T., Seki, G., Amano, S., Oshika, T., Miyata, K., et al. (1999) Functional and molecular evidence for Na+- HCO3– cotransporter in human corneal endothelial cells. Pflügers Archiv, 438, 458-462. doi:10.1007/s004240051062

[6]   Chesler, M. (2003) Regulation and modulation of pH in the brain. Physiological Reviews, 83, 1183-1221.

[7]   Igarashi, T., Inatomi, J., Sekine, T., Seki, G., Shimadzu, M., et al. (2001) Novel nonsense mutation in the Na+/HCO3– cotransporter gene (SLC4A4) in a patient with permanent isolated proximal renal tubular acidosis and bilateral glaucoma. Journal of the American Society of Nephrology, 12, 713-718.

[8]   Dinour, D., Chang, M.H., Satoh, J., Smith, B.L., Angle, N., et al. (2004) A novel missense mutation in the sodium bicarbonate cotransporter (NBCe1/SLC4A4) causes proximal tubular acidosis and glaucoma through ion transport defects. The Journal of Biological Chemistry, 279, 52238-52246. doi:10.1074/jbc.M406591200

[9]   Inatomi, J., Horita, S., Braverman, N., Sekine, T., Yamada, H., et al. (2004) Mutational and functional analysis of SLC4A4 in a patient with proximal renal tubular acidosis. Pflügers Archiv, 448, 438-444. doi:10.1007/s00424-004-1278-1

[10]   Horita, S., Yamada, H., Inatomi, J., Moriyama, N., Sekine, T., et al. (2005) Functional analysis of NBC1 mutants associated with proximal renal tubular acidosis and ocular abnormalities. Journal of the American Society of Nephrology, 16, 2270-2278. doi:10.1681/ASN.2004080667

[11]   Demirci, F.Y., Chang, M.H., Mah, T.S., Romero, M.F. and Gorin, M.B. (2006) Proximal renal tubular acidosis and ocular pathology: A novel missense mutation in the gene (SLC4A4) for sodium bicarbonate cotransporter protein (NBCe1). Molecular Vision, 12, 324-330.

[12]   Suzuki, M., Vaisbich, M.H., Yamada, H., Horita, S., Li, Y., et al. (2008) Functional analysis of a novel missense NBC1 mutation and of other mutations causing proximal renal tubular acidosis. Pflügers Archiv, 455, 583-593. doi:10.1007/s00424-007-0319-y

[13]   Suzuki, M., Van Paesschen, W., Stalmans, I., Horita, S., Yamada, H., et al. (2010) Defective membrane expression of the Na+-HCO3?cotransporter NBCe1 is associated with familial migraine. Proceedings of the National Academy of Sciences of the United States of America, 107, 15963-15968. doi:10.1073/pnas.1008705107

[14]   Gawenis, L.R., Bradford, E.M., Prasad, V., Lorenz, J.N., Simpson, J.E., et al. (2007) Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 Na+/HCO3- cotransporter. The Journal of Biological Chemistry, 282, 9042-9052. doi:10.1074/jbc.M607041200

[15]   Lo, Y.F., Yang, S.S., Seki, G., Yamada, H., Horita, S., et al. (2011) Severe metabolic acidosis causes early lethality in NBC1 W516X knock-in mice as a model of human isolated proximal renal tubular acidosis. Kidney International, 79, 730-741. doi:10.1038/ki.2010.523

[16]   Abuladze, N., Song, M., Pushkin, A., Newman, D., Lee, I., et al. (2000) Structural organization of the human NBC1 gene: KNBC1 is transcribed from an alternative promoter in intron 3. Gene, 251, 109-122. doi:10.1016/S0378-1119(00)00204-3

[17]   Bevensee, M.O., Schmitt, B.M., Choi, I., Romero, M.F. and Boron, W.F. (2000) An electrogenic Na+-HCO3– cotransporter (NBC) with a novel COOH-terminus, cloned from rat brain. American Journal of Physiology—Cell Physiology, 278, C1200-C1211.

[18]   Shirakabe, K., Priori, G., Yamada, H., Ando, H., Horita, S., et al. (2006) IRBIT, an inositol 1,4,5-trisphosphate receptor-binding protein, specifically binds to and activates pancreas-type Na+/HCO3– cotransporter 1 (pNBC1). Proceedings of the National Academy of Sciences of the United States of America, 103, 9542-9547. doi:10.1073/pnas.0602250103

[19]   Schmitt, B.M., Biemesderfer, D., Romero, M.F., Boulpaep, E.L. and Boron, W.F. (1999) Immunolocalization of the electrogenic Na+-HCO3– cotransporter in mammalian and amphibian kidney. American Journal of Physiology, 276, F27-F38.

[20]   Yamada, H., Yamazaki, S., Moriyama, N., Hara, C., Horita, S., et al. (2003) Localization of NBC-1 variants in human kidney and renal cell carcinoma. Biochemical and Biophysical Research Communications, 310, 1213-1218. doi.org/10.1016/j.bbrc.2003.09.147

[21]   Usui, T., Hara, M., Satoh, H., Moriyama, N., Kagaya, H., et al. (2001) Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis. The Journal of Clinical Investigation, 108, 107-115.

[22]   Marino, C.R., Jeanes, V., Boron, W.F. and Schmitt, B.M. (1999) Expression and distribution of the Na+-HCO3– cotransporter in human pancreas. American Journal of Physiology, 277, G487- G494.

[23]   Satoh, H., Moriyama, N., Hara, C., Yamada, H., Horita, S., et al. (2003) Localization of Na+-HCO3- cotransporter (NBC-1) variants in rat and human pancreas. American Journal of Physiology—Cell Physiology, 284, C729- C737.

[24]   Majumdar, D., Maunsbach, A.B., Shacka, J.J., Williams, J.B., Berger, U.V., et al. (2008) Localization of electrogenic Na/bicarbonate cotransporter NBCe1 variants in rat brain. Neuroscience, 155, 818-832. doi:10.1016/j.neuroscience.2008.05.037

[25]   Bok, D., Schibler, M.J., Pushkin, A., Sassani, P., Abuladze, N., et al. (2001) Immunolocalization of electrogenic sodium-bicarbonate cotransporters pNBC1 and kNBC1 in the rat eye. American Journal of Physiology—Renal Physiology, 281, F920-F935.

[26]   Yoshitomi, K., Burckhardt, B.C. and Fromter, E. (1985) Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflügers Archiv, 405, 360-366. doi:10.1007/BF00595689

[27]   Seki, G., Coppola, S., Yoshitomi, K., Burckhardt, B.C., Samarzija, I., et al. (1996) On the mechanism of bicarbonate exit from renal proximal tubular cells. Kidney International, 49, 1671-1677. doi:10.1038/ki.1996.244

[28]   Gross, E., Hawkins, K., Abuladze, N., Pushkin, A., Cotton, C.U., et al. (2001) The stoichiometry of the electrogenic sodium bicarbonate cotransporter NBC1 is cell-type dependent. The Journal of Physiology, 531, 597-603. doi:10.1111/j.1469-7793.2001.0597h.x

[29]   Heyer, M., Muller-Berger, S., Romero, M.F., Boron, W.F. and Fromter, E. (1999) Stoichiometry of the rat kidney Na+- HCO3– cotransporter expressed in Xenopus laevis oocytes. Pflügers Archiv, 438, 322-329. doi:10.1007/s004240050916

[30]   Sciortino, C.M. and Romero, M.F. (1999) Cation and voltage dependence of rat kidney electrogenic Na+-HCO3– cotransporter, rkNBC, expressed in oocytes. American Journal of Physiology, 277, F611-F623.

[31]   Muller-Berger, S., Ducoudret, O., Diakov, A. and Fromter, E. (2001) The renal Na+HCO3–cotransporter expressed in Xenopus laevis oocytes: change in stoichiometry in response to elevation of cytosolic Ca2+ concentration. Pflügers Archiv, 442, 718-728. doi:10.1007/s004240100592

[32]   Seki, G., Coppola, S. and Fromter, E. (1993) The Na+-HCO3– cotransporter operates with a coupling ratio of 2 HCO3– to 1 Na+ in isolated rabbit renal proximal tubule. Pflügers Archiv, 425, 409-416. doi:10.1007/BF00374866

[33]   Muller-Berger, S., Nesterov, V.V. and Fromter, E. (1997) Partial recovery of in vivo function by improved incubation conditions of isolated renal proximal tubule. II. Change of Na-HCO3 cotransport stoichiometry and of response to acetazolamide. Pflügers Archiv, 434, 383-391.

[34]   McAlear, S.D., Liu, X., Williams, J.B., McNicholas-Bevensee, C.M. and Bevensee, M.O. (2006) Electrogenic Na/HCO3 cotransporter (NBCe1) variants expressed in Xenopus oocytes: functional comparison and roles of the amino and carboxy termini. The Journal of General Physiology, 127, 639-658. doi:10.1085/jgp.200609520

[35]   Yang, D., Shcheynikov, N., Zeng, W., Ohana, E., So, I., et al. (2009) IRBIT coordinates epithelial fluid and HCO3- secretion by stimulating the transporters pNBC1 and CFTR in the murine pancreatic duct. The Journal of Clinical Investigation, 119, 193-202.

[36]   Ando, H., Mizutani, A., Matsu-ura, T. and Mikoshiba, K. (2003) IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor. The Journal of Biological Chemistry, 278, 10602-10612. doi:10.1074/jbc.M210119200

[37]   Devogelaere, B., Nadif Kasri, N., Derua, R., Waelkens, E., Callewaert, G., et al. (2006) Binding of IRBIT to the IP3 receptor: Determinants and functional effects. Biochemical and Biophysical Research Communications, 343, 49-56. doi:10.1016/j.bbrc.2006.02.119

[38]   Ando, H., Mizutani, A., Kiefer, H., Tsuzurugi, D., Michikawa, T., et al. (2006) IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. Molecular Cell, 22, 795-806. doi.:10.1016/j.molcel.2006.05.017

[39]   Yang, D., Li, Q., So, I., Huang, C.L., Ando, H., et al. (2011) IRBIT governs epithelial secretion in mice by antagonizing the WNK/SPAK kinase pathway. The Journal of Clinical Investigation, 121, 956-965. doi:10.1172/JCI43475

[40]   Wu, J., McNicholas, C.M. and Bevensee, M.O. (2009) Phosphatidylinositol 4,5-bisphosphate (PIP2) stimulates the electrogenic Na/HCO3 cotransporter NBCe1-A expressed in Xenopus oocytes. Proceedings of the National Academy of Sciences of the United States of America, 106, 14150-14155. doi:10.1073/pnas.0906303106

[41]   Yamaguchi, S. and Ishikawa, T. (2008) The electrogenic Na+-HCO3– cotransporter NBCe1-B is regulated by intracellular Mg2+. Biochemical and Biophysical Research Communications, 376, 100-104. doi:10.1016/j.bbrc.2008.08.104

[42]   Zhu, Q., Kao, L., Azimov, R., Newman, D., Liu, W., et al. (2010) Topological location and structural importance of the NBCe1-A residues mutated in proximal renal tubular acidosis. The Journal of Biological Chemistry, 285, 13416-13426. doi:10.1074/jbc.M109.093286

[43]   Shiohara, M., Igarashi, T., Mori, T. and Komiyama, A. (2000) Genetic and long-term data on a patient with permanent isolated proximal renal tubular acidosis. European Journal of Pediatrics, 159, 892-894. doi:10.1007/PL00008363

[44]   Lacruz, R.S., Smith, C.E., Moffatt, P., Chang, E.H., Bromage, T.G., et al. (2011) Requirements for ion and solute transport, and pH regulation, during enamel maturation. Journal of Cellular Physiology, in press. doi:10.1002/jcp.22911

[45]   Li, H.C., Szigligeti, P., Worrell, R.T., Matthews, J.B., Conforti, L., et al. (2005) Missense mutations in Na+:HCO3– cotransporter NBC1 show abnormal trafficking in polarized kidney cells: A basis of proximal renal tubular acidosis. American Journal of Physiology—Renal Physiology, 289, F61-F71. doi:10.1152/ajprenal.00032.2005

[46]   Toye, A.M., Parker, M.D., Daly, C.M., Lu, J., Virkki, L.V., et al. (2006) The human NBCe1-A mutant R881C, associated with proximal renal tubular acidosis, retains function but is mistargeted in polarized renal epithelia. American Journal of Physiology—Cell Physiology, 291, C788-C801. doi:10.1152/ajpcell.00094.2006

[47]   Lipton, R.B., Scher, A.I., Kolodner, K., Liberman, J., Steiner, T.J., et al. (2002) Migraine in the United States: epidemiology and patterns of health care use. Neurology, 58, 885-894.

[48]   Ophoff, R.A., Terwindt, G.M., Vergouwe, M.N., van Eijk, R., Oefner, P.J., et al. (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell, 87, 543-552. doi:10.1016/S0092-8674(00)81373-2

[49]   De Fusco, M., Marconi, R., Silvestri, L., Atorino, L., Rampoldi, L. et al. (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nature Genetics, 33, 192-196. doi:10.1038/ng1081

[50]   Dichgans, M., Freilinger, T., Eckstein, G., Babini, E., Lorenz-Depiereux, B., et al. (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet, 366, 371-377. doi:10.1016/S0140-6736(05)66786-4

[51]   Goadsby, P.J. (2007) Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends in Molecular Medicine, 13, 39-44. doi:10.1016/j.molmed.2006.11.005

[52]   Brune, T., Fetzer, S., Backus, K.H. and Deitmer, J.W. (1994) Evidence for electrogenic sodium-bicarbonate cotransport in cultured rat cerebellar astrocytes. Pflügers Archiv, 429, 64-71. doi:10.1007/BF02584031

[53]   Alper, S.L. (2002) Genetic diseases of acid-base transporters. Annual Review of Physiology, 64, 899-923. doi:10.1146/annurev.physiol.64.092801.141759

[54]   Kao, L., Sassani, P., Azimov, R., Pushkin, A., Abuladze, N., et al. (2008) Oligomeric structure and minimal functional unit of the electrogenic sodium bicarbonate cotransporter NBCe1-A. The Journal of Biological Chemistry, 283, 26782-26794. doi:10.1074/jbc.M804006200

[55]   Svichar, N., Esquenazi, S., Chen, H.Y. and Chesler, M. (2011) Preemptive regulation of intracellular pH in hippocampal neurons by a dual mechanism of depolarization-induced alkalinization. The Journal of Neuroscience, 31, 6997-7004. doi:10.1523/JNEUROSCI.6088-10.2011

[56]   Ji, W., Foo, J.N., O'Roak, B.J., Zhao, H., Larson, M.G., et al. (2008) Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nature Genetics, 40, 592-599. doi:10.1038/ng.118

[57]   Schultheis, P.J., Clarke, L,L., Meneton, P., Miller, M.L., Soleimani, M., et al. (1998) Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nature Genetics, 19, 282-285. doi:10.1038/969

[58]   Woo, A.L., Noonan, W.T., Schultheis, P.J., Neumann, J.C., Manning, P.A., et al. (2003) Renal function in NHE3-deficient mice with transgenic rescue of small intestinal absorptive defect. American Journal of Physiology—Renal Physiology, 284, F1190-F1198.

[59]   Gurley, S.B., Riquier-Brison, A.D., Schnermann, J., Sparks, M.A., Allen, A.M., et al. (2011) AT1A angiotensin receptors in the renal proximal tubule regulate blood pressure. Cell Metabolism, 13, 469-475. doi:10.1016/j.cmet.2011.03.001

[60]   Yamazaki, O., Yamada, H., Suzuki, M., Horita, S., Shirai, A., et al. (2011) Functional characterization of nonsynonymous single nucleotide polymorphisms in the electrogenic Na+-HCO3– cotransporter NBCe1A. Pflügers Archiv, 461, 249-259. doi:10.1007/s00424-010-0918-x

[61]   Lu, J. and Boron, W.F. (2007) Reversible and irreversible interactions of DIDS with the human electrogenic Na/HCO3 cotransporter NBCe1-A: role of lysines in the KKMIK motif of TM5. American Journal of Physiology—Cell Physiology, 292, C1787-C1798. doi:10.1152/ajpcell.00267.2006

[62]   Welch, E.M., Barton, E.R., Zhuo, J., Tomizawa, Y., Friesen, W.J., et al. (2007) PTC124 targets genetic disorders caused by nonsense mutations. Nature, 447, 87-91. doi:10.1038/nature05756

[63]   Du, M., Liu, X., Welch, E.M., Hirawat, S., Peltz, S.W., et al. (2008) PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proceedings of the National Academy of Sciences of the United States of America, 105, 2064-2069. doi:10.1073/pnas.0711795105

[64]   Choi, J.Y., Shah, M., Lee, M.G., Schultheis, P.J., Shull, G.E., et al. (2000) Novel amiloride-sensitive sodium-dependent proton secretion in the mouse proximal convoluted tubule. The Journal of Clinical Investigation, 105, 1141-1146. doi:10.1172/JCI9260

[65]   Goyal, S., Vanden Heuvel, G. and Aronson, P.S. (2003) Renal expression of novel Na+/H+ exchanger isoform NHE8. American Journal of Physiology—Renal Physiology, 284, F467-F473.

 
 
Top