Back
 AiM  Vol.6 No.9 , August 2016
Differential Regulation of Proteins and a Possible Role for Manganese Superoxide Dismutase in Bioluminescence of Panellus stipticus Revealed by Suppression Subtractive Hybridization
Abstract: Suppression subtractive hybridization (SSH) was employed to investigate bioluminescence in Panellus stipticus (Bull.) P. Karst. by detecting proteins differentially expressed in bioluminescent and luminescent strains. Comparisons of luminescent and non-luminescent monokaryon cultures of North American strains revealed differences in transcript levels of proteins responsible for post-translational modification (PTM) of enzymes. A similar comparison of a luminescent strain of P. stipticus from North America with a non-luminescent European strain revealed the presence of extracellular manganese superoxide dismutase (MnSOD) in the luminescent form, in addition to proteins involved in PTM. The application of MnSOD-specific inhibitors to luminescent mycelium resulted in the rapid loss of luminescence. The relevance to luminescence of proteins involved in PTM is discussed, together with a possible role for MnSOD that considers the potential for SODs to form stable complexes with catechols revealed in previously published research. In light of the recent discovery that hispidine may be the precursor of fungal luciferin, we consider a hypothetical mechanism for fungal luminescence in which the ο-hydroquinone moiety of a hispidine derivative ligates with the extracellular form of MnSOD producing a semiquinone-radical complex, with the resultant semiquinonato complex potentially reacting with molecular oxygen or other reactive oxygen species to produce sufficiently excited intermediates to emit light on relaxation.
Cite this paper: Vydryakova, G. and Bissett, J. (2016) Differential Regulation of Proteins and a Possible Role for Manganese Superoxide Dismutase in Bioluminescence of Panellus stipticus Revealed by Suppression Subtractive Hybridization. Advances in Microbiology, 6, 613-626. doi: 10.4236/aim.2016.69061.
References

[1]   Oliveira, A.G., Carvalho, R.P., Waldenmaier, H.E. and Stevani, C.V. (2013) Bioluminescência de Fungos: Distribuicao, Funcao e Mecanismo de Emissao de Luz. Química Nova, 36, 314-319.
http://dx.doi.org/10.1590/S0100-40422013000200018

[2]   Lingle, W.L. (1989) Effects of Veratryl Alcohol on Growth and Bioluminescence of Panellus stipticus. Mycological Society of America Newsletter, 40, 36 (Abstract).

[3]   Lingle, W.L. (1993) Bioluminescence and Lignolysis during Secondary Metabolism in the Fungus Panellus. Journal of Bioluminescence and Chemiluminescence, 8, 100.

[4]   Bermudes, D., Petersen, R.H. and Nealson, K.H. (1992) Low-Level Bioluminescence Detected in Mycena haematopus Basidiocarps. Mycologia, 84, 799-802.
http://dx.doi.org/10.2307/3760392

[5]   Macrae, R. (1937) Interfertility Phenomena of the American and European Forms of Panus stypticus (Bull.) Fries. Nature, 139, 674.
http://dx.doi.org/10.1038/139674b0

[6]   Macrae, R. (1942) Interfertility Studies and Inheritance of Luminosity in Panus stypticus. Canadian Journal of Research, 20, 411-434.
http://dx.doi.org/10.1139/cjr42c-037

[7]   Lingle, W., Porter, D. and O’Kane, D.J. (1992) Preliminary Analysis of Genetic Complementation of Bioluminescence in Panellus stypticus Isolated from Pine and Hardwood. Mycologia, 84, 94-104.
http://dx.doi.org/10.2307/3760407

[8]   Bothe, F. (1935) Genetische Untersuchungen uber die Lichtenwicklung der Hutpilze. Archiv fur Protistenkunde, 85, 369-383.

[9]   Harvey, E.N. (1941) Review of Bioluminescence. Annual Review of Biochemistry, 10, 531-552.
http://dx.doi.org/10.1146/annurev.bi.10.070141.002531

[10]   Shimomura, O. (1989) Chemiluminescence of Panal (a Sesquiterpene) Isolated from the Luminous Fungus Panellus stipticus. Photochemistry and Photobiology, 49, 355-360.

[11]   Shimomura, O. (1992) The Role of Superoxide Dismutase in Regulating the Light Emission of Luminescent Fungi. Journal of Experimental Botany, 43, 1519-1525.
http://dx.doi.org/10.1093/jxb/43.11.1519

[12]   Shimomura, O. (2006) Bioluminescence: Chemical Principles and Methods. World Scientific Publishing Co Pte Ltd, Singapore, 470 p.
http://dx.doi.org/10.1142/6102

[13]   Bondar, V.S., Puzyr, A.P., Purtov, K.V., Medvedeva, S.E., Rodicheva, E.K., Kalacheva, G.S. and Gitelson, J.I. (2012) A Study of Neonothopanus nambi Luminescent System. Luminescence, 27, 101-102.

[14]   Gitelson, J., Bondar, V., Rodicheva, E., Medvedeva, S. and Vydryakova, G. (2012) Chemiluminescence of Higher Fungi. Luminescence, 27, 118.

[15]   Shimomura, O. (1993) The Role of Superoxide Ion in Bioluminescence. In: Shima, A., et al., Eds., Frontiers of Photobiology, Elsevier Science Publishers, Amsterdam, 249-254.

[16]   Buller, A.H.R. (1924) The Bioluminescence of Panus stipticus. In: Buller, A.H.R., Ed., Researches on Fungi, Vol. 3, Longmans, Green and Company, London, 357-431.

[17]   Airth, R.L. and McElroy, W.D. (1959) Light Emission from Extracts of Luminous Fungi. Journal of Bacteriology, 77, 249-250.

[18]   Airth, R.L. and Foerster, G.E. (1964) Enzymes Associated with the Bioluminescence of Panus stipticus luminescens and Panus stipticus nonluminescens. Journal of Bacteriology, 88, 1372-1379.

[19]   Kamzolkina, O.V., Danilov, V.S. and Egorov, N.S. (1983) Nature of Luciferase from the Bioluminescent Fungus Armillariella mellea. Doklady Akademii Nauk SSSR, 271, 750-752.

[20]   Kamzolkina, O.V., Bekker, Z.E. and Egorov, N.S. (1984) Extraction of the Luciferin-Luciferase System from the Fungus Armillariella mellea. Biologicheskie Nauki, 1, 73-77.

[21]   Oliveira, A.G. and Stevani, C.V. (2009) The Enzymatic Nature of Fungal Bioluminescence. Photochemical and Photobiological Sciences, 8, 1416-1421.
http://dx.doi.org/10.1039/b908982a

[22]   Oliviera, A.G., Carvalho, R.P. and Stevani, C.V. (2012) On the Purification of the Fungal Luciferin. Luminescence, 27, 150.

[23]   Kuwabara, S. and Wassink, E.C. (1966) Purification and Properties of the Active Substance of Fungal Luminescence. In: Johnson, F.H. and Haneda, Y., Eds., Bioluminescence in Progress, Princeton University Press, Princeton, 233-245.

[24]   Oliviera, A.G., Desjardin, D.E., Perry, B.A. and Stevani, C.V. (2012) Evidence that a Single Bioluminescent System Is Shared by All Known Bioluminescent Fungal Lineages. Photochemical and Photobiological Sciences, 11, 848-852.
http://dx.doi.org/10.1039/c2pp25032b

[25]   Purtov, K.V., Petushkov, V.N., Baranov, M.S., Mineev, K.S., Rodionova, N.S., Kaskova, Z.M., et al. (2015) The Chemical Basis of Fungal Bioluminescence. Angewandte Chemie International Edition, 54, 8124-8128.

[26]   Oliveira, A.G., Stevani, C.V., Waldenmaier, H.E., Viviani, V., Emerson, J.M., Loros, J.J. and Dunlap, J.C. (2015) Circadian Control Sheds Light on Fungal Bioluminescence. Current Biology, 25, 964-968.
http://dx.doi.org/10.1016/j.cub.2015.02.021

[27]   Desjardin, D.E., Oliveira, A.G. and Stevani, C.V. (2008) Fungi Bioluminescence Revisited. Photochemical and Photobiological Sciences, 7, 170-182.
http://dx.doi.org/10.1039/b713328f

[28]   Bondar, V.S., Shimomura, O. and Gitelson, J.I. (2012) Luminescence of Higher Mushrooms. Journal of the Siberian Federal University, Biology, 4, 331-351.

[29]   Stevani, C.V., Oliveira, A.G., Mendes, L.F., Ventura, F.F., Waldenmaier, H.E., Carvalho, R.P. and Pereira, T.A. (2013) Current Status of Research on Fungal Bioluminescence: Biochemistry and Prospects for Ecotoxicological Application. Photochemistry and Photobiology, 89, 1318-1326.
http://dx.doi.org/10.1111/php.12135

[30]   Roberts, B. and Hirst, R. (1996) Identification and Characterisation of a Superoxide Dismutase and Catalase from Mycobacterium ulcerans. Journal of Medical Microbiology, 45, 383-387.
http://dx.doi.org/10.1099/00222615-45-5-383

[31]   Bannister, J.V., Bannister, W.H. and Rotilio, G. (1987) Aspects of the Structure, Function, and Applications of Superoxide Dismutase. Critical Reviews in Biochemistry and Molecular Biology, 22, 111-180.
http://dx.doi.org/10.3109/10409238709083738

[32]   Puzyr, A., Burov, A. and Bondar, V. (2013) Source of Light Emission in a Luminous Mushroom of the Fungus Panellus stipticus. Journal of Research in Biology, 3, 900-905.

[33]   Rapp, U., Adams, W.C. and Miller, R.W. (1973) Purification of Superoxide Dismutase from Fungi and Characterization of the Reaction of the Enzyme with Catechols by Electron Spin Resonance Spectroscopy. Canadian Journal of Biochemistry, 51, 158-171.
http://dx.doi.org/10.1139/o73-021

[34]   Eastwood, D.C., Kingsnorth, C.S., Jones, H.E. and Burton, K.S. (2001) Genes with Increased Transcript Levels Following Harvest of the Sporophore of Agaricus bisporus Have Multiple Physiological Roles. Mycological Research, 105, 1223-1230.
http://dx.doi.org/10.1016/S0953-7562(08)61993-0

[35]   Belinky, P.A., Goldberg, D., Krinfeld, B., Burger, M., Rothschild, N., Cogan, U. and Dosoretz, C.G. (2002) Manganese-Containing Superoxide Dismutase from the White-Rot Fungus Phanerachaete chrysosporium: Its Function, Expression and Gene Structure. Enzyme and Microbial Technology, 31, 754-764.
http://dx.doi.org/10.1016/S0141-0229(02)00180-1

[36]   Matityahu, A., Hadar, Y., Dosoretz, C.G. and Belinky, P.A. (2008) Gene Silencing by RNA Interference in the White Rot Fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 74, 5359-5365.
http://dx.doi.org/10.1128/AEM.02433-07

[37]   Pan, S.-M., He, J.-S. and Seu, R.-S. (1997) Purification and Characterization of Manganese Superoxide Dismutase from Ganoderma microsporum. International Union of Biochemistry and Molecular Biology Life, 42, 1035-1043.
http://dx.doi.org/10.1080/15216549700203491

[38]   Lamarre, C., LeMay, J.D., Deslauriers, N. and Bourbonnais, Y. (2001) Candida albicans Expresses an Unusual Cytoplasmic Manganese-Containing Superoxide Dismutase (SOD3 Gene Product) upon the Entry and during the Stationary Phase. Journal of Biological Chemistry, 276, 43784-43791.
http://dx.doi.org/10.1074/jbc.M108095200

[39]   Frealle, E., Noel, C., Nolard, N., Symoens, F., Felipe, M.S., Dei-Cas, E., Camus, D., Viscogliosi, E. and Delhaes, L. (2006) Manganese Superoxide Dismutase Based Phylogeny of Pathogenic Fungi. Molecular Phylogenetics and Evolution, 41, 28-30.
http://dx.doi.org/10.1016/j.ympev.2006.05.001

[40]   Xie, X.-Q., Wang, J., Huang, B.-F., Ying, S.-H. and Feng, M.-G. (2010) A New Manganese Superoxide Dismutase Identified from Beauveria bassiana Enhances Virulence and Stress Tolerance when Overexpressed in the Fungal Pathogen. Applied Microbiology and Biotechnology, 86, 1543-1553.
http://dx.doi.org/10.1007/s00253-010-2437-2

[41]   Jacob, C.C.M., Brun, A., Steinman, H., Jacquot, J.-P., Botton, B. and Chalot, M. (2001) Molecular Cloning, Characterization and Regulation by Cadmium of a Superoxide Dismutase from the Ectomycorrhizal Fungus Paxillus involutus. European Journal of Biochemistry, 268, 3223-3232.
http://dx.doi.org/10.1046/j.1432-1327.2001.02216.x

[42]   Karlsson, M., Stenlid, J. and Olson, A. (2005) Identification of a Superoxide Dismutase Gene from the Conifer Pathogen Heterobasidion annosum. Physiological and Molecular Plant Pathology, 66, 99-107.
http://dx.doi.org/10.1016/j.pmpp.2005.05.004

[43]   Freitag, J., Ast, J. and Bolker, M. (2012) Cryptic Peroxisomal Targeting via Alternative Splicing and Stop Codon Read-Through in Fungi. Nature, 485, 522-525.
http://dx.doi.org/10.1038/nature11051

[44]   Gould, S.J., Keller, G.-A., Hosken, N., Wilkinson, J. and Subramani, S. (1989) A Conserved Tripeptide Sorts Proteins to Peroxisomes. Journal of Cell Biology, 108, 1657-1664.
http://dx.doi.org/10.1083/jcb.108.5.1657

[45]   Neuberger, G., Maurer-Stroh, S., Eisenhaber, B., Hartig, A. and Eisenhaber, F. (2003) Motif Refinement of the Peroxisomal Targeting Signal 1 and Evaluation of the Taxon-Specific Differences. Journal of Molecular Biology, 328, 567-579.
http://dx.doi.org/10.1016/S0022-2836(03)00318-8

[46]   Brocard, C. and Hartig, A. (2006) Peroxisome Targeting Signal 1: Is It Really a Simple Tripeptide? Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1763, 1565-1573.
http://dx.doi.org/10.1016/j.bbamcr.2006.08.022

[47]   Neuberger, G., Maurer-Stroh, S., Eisenhaber, B., Hartig, A. and Eisenhaber, F. (2003) Prediction of Peroxisomal Targeting Signal 1 Containing Proteins from Amino Acid Sequence. Journal of Molecular Biology, 328, 581-592.
http://dx.doi.org/10.1016/S0022-2836(03)00319-X

[48]   Fridovich, I. (1995) Superoxide Radical and Superoxide Dismutases. Annual Review of Biochemistry, 64, 97-112.
http://dx.doi.org/10.1146/annurev.bi.64.070195.000525

[49]   Regelsberger, G., Atzenhofer, W., Rüker, F., Peschek, G.A., Jakopitsch, C., Paumann, M., Furtmüller, P.G. and Obinger, C. (2002) Biochemical Characterization of a Membrane-Bound Manganese-Containing Superoxide Dismutase from the Cyanobacterium Anabaena PCC 7120. Journal of Biological Chemistry, 277, 43615-43622.
http://dx.doi.org/10.1074/jbc.M207691200

[50]   Johansson, M.W., Holmblad, T., Thornqvist, P.-O., Cammarata, M., Parrinello, N. and Soderhall, K. (1999) A Cell-Surface Superoxide Dismutase Is a Binding Protein for Peroxinectin, a Cell-Adhesive Peroxidase in Crayfish. Journal of Cell Science, 112, 917-925.

[51]   Sheng, Y., Stich, T.A., Barnese, K., Gralla, E.B., Cascio, D., Britt, R.D., Cabelli, D.E. and Valentine, J.S. (2011) A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans. Journal of the American Chemical Society, 133, 20878-20889.
http://dx.doi.org/10.1021/ja2077476

[52]   Sheng, Y., Gralla, E.B., Schumacher, M., Cascio, D., Cabelli, D.E. and Valentine, J.S. (2012) Six-Coordinate Manganese(3+) in Catalysis by Yeast Manganese Superoxide Dismutase. Proceedings of the National Academy of Sciences of the United States of America, 109, 14314-14319.
http://dx.doi.org/10.1073/pnas.1212367109

[53]   Yamahara, T., Shiono, T., Suzuki, T., Tanaka, K., Takio, S., Sato, K., et al. (1999) Isolation of a Germin-Like Protein with Manganese Superoxide Dismutase Activity from Cells of a Moss Barbula unguiculata. Journal of Biological Chemistry, 274, 33274-33278.
http://dx.doi.org/10.1074/jbc.274.47.33274

[54]   Kukavica, B., Mojovic, M., Vucinic, Z., Maksimovic, V., Takahama, U. and Jovanovic, S.V. (2009) Generation of Hydroxyl Radical in Isolated Pea Root Cell Wall, and the Role of Cell Wall-Bound Peroxidase, Mn-SOD and Phenolics in Their Production. Plant and Cell Physiology, 50, 304-317.
http://dx.doi.org/10.1093/pcp/pcn199

[55]   Kalyanaraman, B., Felix, C.C. and Sealy, R.C. (1985) Semiquinone Anion Radicals of Catechol(Amine)s, Catechol Estrogens, and Their Metal Ion Complexes. Environmental Health Perspectives, 64, 185-198.
http://dx.doi.org/10.1289/ehp.8564185

[56]   Brunmark, A. and Cadenas, E. (1987) Electronically Excited State Generation during the Reaction of p-Benzoquinone with H2O2: Relation to Product Formation: 2-OH- and 2,3-Epoxy-p-benzoquinone. The Effect of Glutathione. Free Radical Biology and Medicine, 3, 169-180.
http://dx.doi.org/10.1016/0891-5849(87)90002-5

[57]   Song, Y. and Buettner, G.R. (2010) Thermodynamic and Kinetic Considerations for the Reaction of Semiquinone Radicals to Form Superoxide and Hydrogen Peroxide. Free Radical Biology and Medicine, 49, 919-962.
http://dx.doi.org/10.1016/j.freeradbiomed.2010.05.009

[58]   Fridovich, I. (1975) Superoxide Dismutases. Annual Review of Biochemistry, 44, 147-159.
http://dx.doi.org/10.1146/annurev.bi.44.070175.001051

[59]   Koch, W.H. and Chedekel, M.R. (1987) Photochemistry and Photobiology of Melanogenic Metabolites: Formation of Free Radicals. Photochemistry and Photobiology, 46, 229-238.
http://dx.doi.org/10.1111/j.1751-1097.1987.tb04761.x

[60]   Soulère, L., Viodé, C., Périé, J. and Hoffmann, P. (2002) Selective Inhibition of Feversus Cu/Zn-Superoxide Dismutases by 2,3-Dihydroxybenxoic Acid Derivatives. Chemical and Pharmaceutical Bulletin, 50, 578-582.
http://dx.doi.org/10.1248/cpb.50.578

[61]   Komarov, D.A., Slepneva, I.A., Glupov, V.V. and Khramtsov, V.V. (2005) Superoxide and Hydrogen Peroxide Formation during Enzymatic Oxidation of DOPA by Phenoloxidase. Free Radical Research, 39, 853-858.
http://dx.doi.org/10.1080/10715760500166693

[62]   Shimomura, O. (1991) Superoxide-Triggered Chemiluminescence of the Extract of the Luminous Mushroom Panellus stipticus After Treatment with Methylamine. Journal of Experimental Botany, 42, 555-560.
http://dx.doi.org/10.1093/jxb/42.4.555

[63]   Abreu, I.A. and Cabelli, D.E. (2010) Superoxide Dismutases—A Review of the Metal-Associated Mechanistic Variations. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics, 1804, 263-274.
http://dx.doi.org/10.1016/j.bbapap.2009.11.005

[64]   Bull, C., Niederboffe, E.C., Yoshida, T. and Fee, J.A. (1991) Kinetic Studies of Superoxide Dismutases: Properties of the Manganese-Containing Protein from Thermus thermophilus. Journal of the American Chemical Society, 113, 4069-4076.
http://dx.doi.org/10.1021/ja00011a003

[65]   Aguirre, J.D. and Culotta, V.C. (2012) Battles with Iron: Manganese in Oxidative Stress Protection. Journal of Biological Chemistry, 287, 13541-13548.
http://dx.doi.org/10.1074/jbc.R111.312181

[66]   Olsson, S., Crowe, J.D. and Thrane, C. (2000) Bioluminescence in the Basidiomycete Panellus stipticus: An Alternative Oxidase Pathway? Poster, 5th International Conference on Plasma Membrane Redox Systems and Their Role in Biological Stress and Disease, Hamburg, 26-29 March 2000. (unpublished)

 
 
Top