Back
 JBiSE  Vol.9 No.9 , August 2016
Genipin Cross-Linked Polyvinyl Alcohol-Gelatin Hydrogel for Bone Regeneration
Abstract: Polyvinyl alcohol gelatin hydrogels were fabricated using genipin as a crosslinking agent for bone regeneration application. Optimized formulation of PVA-GE hydrogel was fabricated using genipin as crosslinking agent. Characterizations such as FTIR, morphology, porosity, pore size, degradation and swelling rate were investigated. Bone regeneration potential of optimized genipin cross-linked polyvinyl alcohol-gelatin (PVA20) hydrogels was assessed by implanting in rabbit’s femur defect for 1, 5 and 15 weeks period. Results showed interconnected porosity as observed in scanning electron microscopy and successful crosslinking as confirmed by FTIR analysis. Increased porosity (92% ± 2.46%) and pore size distribution (100 - 200 μm) were also observed as well as decrease in swelling rate (426% ± 10.50%). Bone formation was evident in micro-CT after 5 and 15 days of in vivo implantation period. Micro-CT analysis showed 32.67% increased bone formation of PVA-GE hydrogel defect compared with negative control after 15 weeks of in-vivo implantation. Histological analyses showed no inflammatory reaction post implantation and increase in cell matrix formation after 5 and 15 weeks. The combined physical and chemical method of crosslinking promises improved mechanical properties of PVA-GE hydrogel making it a potential scaffold for bone tissue engineering applications.
Cite this paper: Nguyen, T. , Ventura, R. , Min, Y. and Lee, B. (2016) Genipin Cross-Linked Polyvinyl Alcohol-Gelatin Hydrogel for Bone Regeneration. Journal of Biomedical Science and Engineering, 9, 419-429. doi: 10.4236/jbise.2016.99037.
References

[1]   Woerly, S. (1997) Porous Hydrogels for Neural Tissue Engineering. Materials Science Forum, 250, 53-68.
http://dx.doi.org/10.4028/www.scientific.net/MSF.250.53

[2]   Nguyen, T.P. and Lee, B.T. (2012) Fabrication of Oxidized Alginate-Gelatin-BCP Hydrogels and Evaluation of the Microstructure, Material Properties and Biocompatibility for Bone Tissue Regeneration. Journal of Biomaterials Applications, 27, 311-321.
http://dx.doi.org/10.1177/0885328211404265

[3]   Gkioni, K., Leeuwenburgh, S.C., Douglas, T.E., Mikos, A.G. and Jansen, J.A. (2010) Mineralization of Hydrogels for Bone Regeneration. Tissue Engineering Part B Reviews, 16, 577-585.
http://dx.doi.org/10.1089/ten.teb.2010.0462

[4]   Kim, B.S. and Mooney, D.J. (1998) Development of Biocompatible Synthetic Extracellular Matrices for Tissue Engineering. Trends in Biotechnology, 16, 224-230.
http://dx.doi.org/10.1016/S0167-7799(98)01191-3

[5]   Nair, L.S. and Laurencin, C.T. (2007) Biodegradable Polymers as Biomaterials. Progress in Polymer Science, 32, 762- 798.
http://dx.doi.org/10.1016/j.progpolymsci.2007.05.017

[6]   Zustiak, S.P. and Leach, J.B. (2010) Hydrolytically Degradable Poly(Ethylene Glycol) Hydrogel Scaffolds with Tunable Degradation and Mechanical Properties. Biomacromolecules, 11, 1348-1357.
http://dx.doi.org/10.1021/bm100137q

[7]   Nie, T., Baldwin, A., Yamaguchi, N. and Kiick, K.L. (2007) Production of Heparin-Functionalized Hydrogels for the Development of Responsive and Controlled Growth Factor Delivery Systems. Journal of Controlled Release, 122, 287-296.
http://dx.doi.org/10.1016/j.jconrel.2007.04.019

[8]   Akagawa, Y., Kubo, T., Koretake, K., Hayashi, K., Doi, K., Matsuura, A., et al. (2009) Initial Bone Regeneration around Fenestrated Implants in Beagle Dogs Using Basic Fibroblast Growth Factor-Gelatin Hydrogel Complex with Varying Biodegradation Rates. Journal of Prosthodontic Research, 53, 41-47.
http://dx.doi.org/10.1016/j.jpor.2008.08.009

[9]   Wang, T.W., Wu, H.C., Huang, Y.C., Sun, J.S. and Lin, F.H. (2006) Biomimetic Bilayered Gelatin-Chondroitin 6 Sulfate-Hyaluronic Acid Biopolymer as a Scaffold for Skin Equivalent Tissue Engineering. Artificial Organs, 30, 141- 149.
http://dx.doi.org/10.1111/j.1525-1594.2006.00200.x

[10]   Zhao, F., Yin, Y., Lu, W.W., Leong, J.C., Zhang, W., Zhang, J., et al. (2002) Preparation and Histological Evaluation of Biomimetic Three-Dimensional Hydroxyapatite/Chitosan-Gelatin Network Composite Scaffolds. Biomaterials, 23, 3227-3234.
http://dx.doi.org/10.1016/S0142-9612(02)00077-7

[11]   Kobayashi, M., Toguchida, J. and Oka, M. (2003) Preliminary Study of Polyvinyl Alcohol-Hydrogel (PVA-H) Artificial Meniscus. Biomaterials, 24, 639-647.
http://dx.doi.org/10.1016/S0142-9612(02)00378-2

[12]   Park, J.S., Woo, D.G., Sun, B.K., Chung, H.M., Im, S.J., Choi, Y.M., et al. (2007) In Vitro and in Vivo Test of PEG/PCL-Based Hydrogel Scaffold for Cell Delivery Application. Journal of Controlled Release, 124, 51-59.
http://dx.doi.org/10.1016/j.jconrel.2007.08.030

[13]   Hou, Y., Tsai, S.-Y., Lai, P., Chen, Y. and Chao, P. (2008) Metabolism and Pharmacokinetics of Genipin and Geniposide in Rats. Food and Chemical Toxicology, 46, 2764-2769.
http://dx.doi.org/10.1016/j.fct.2008.04.033

[14]   Bedran-Russo, A.K.B., Pereira, P.N., Duarte, W.R., Drummond, J.L. and Yamauchi, M. (2007) Application of Crosslinkers to Dentin Collagen Enhances the Ultimate Tensile Strength. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 80, 268-272.
http://dx.doi.org/10.1002/jbm.b.30593

[15]   Dikovsky, D., Bianco-Peled, H. and Seliktar, D. (2006) The Effect of Structural Alterations of PEG-Fibrinogen Hydrogel Scaffolds on 3-D Cellular Morphology and Cellular Migration. Bio-materials, 27, 1496-1506.
http://dx.doi.org/10.1016/j.biomaterials.2005.09.038

[16]   Allen, R.A., Seltz, L.M., Jiang, H., Kasick, R.T., Sellaro, T.L., Badylak, S.F., et al. (2010) Adrenal Extracellular Matrix Scaffolds Support Adrenocortical Cell Proliferation and Function in Vitro. Tissue Engineering Part A, 16, 3363-3374.
http://dx.doi.org/10.1089/ten.tea.2010.0005

[17]   Badylak, S.F., Freytes, D.O. and Gilbert, T.W. (2009) Extracellular Matrix as a Biological Scaffold Material: Structure and Function. Acta Biomaterialia, 5, 1-13.
http://dx.doi.org/10.1016/j.actbio.2008.09.013

[18]   Suri, S., Ruan, G., Winter, J. and Schmidth, C. (2013) Microparticles and Nanoparticles. In: Ratner, B., Hoffman, A., Schoen, F. and Lemons, J., Eds., Biomaterials Science: An Introduction to Materials in Medicine, Elsevier, San Diego, 360-388.

[19]   Linh, N.T. and Lee, B.T. (2012) Electrospinning of Polyvinyl Al-cohol/Gelatin Nanofiber Composites and Cross- Linking for Bone Tissue Engineering Application. Journal of Biomaterials Applications, 27, 255-266.
http://dx.doi.org/10.1177/0885328211401932

[20]   Bohidar, H.B. and Jena, S.S. (1994) Study of Sol-State Properties of Aqueous Gelatin Solutions. The Journal of Chemical Physics, 100, 6888-6895.
http://dx.doi.org/10.1063/1.467004

[21]   Lee, S.B., Jeon, H.W., Lee, Y.W., Lee, Y.M., Song, K.W., Park, M.H., et al. (2003) Bio-Artificial Skin Composed of Gelatin and (1→3), (1→6)-β-Glucan. Biomaterials, 24, 2503-2511.
http://dx.doi.org/10.1016/S0142-9612(03)00003-6

[22]   Liang, H.C., Chang, W.H., Lin, K.J. and Sung, H.W. (2003) Genipin-Crosslinked Gelatin Microspheres as a Drug Carrier for Intramuscular Administration: In Vitro And in Vivo Studies. Journal of Biomedical Materials Research Part A, 65, 271-282.
http://dx.doi.org/10.1002/jbm.a.10476

[23]   Baker, M.I., Walsh, S.P., Schwartz, Z. and Boyan, B.D. (2012) A Review of Polyvinyl Alcohol and Its Uses in Cartilage and Orthopedic Applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100, 1451- 1457.
http://dx.doi.org/10.1002/jbm.b.32694

[24]   Maria, T.M.C., de Carvalho, R.A., Sobral, P.J.A., Habitante, A.M.B.Q. and Solorza-Feria, J. (2008) The Effect of the Degree of Hydrolysis of the PVA and the Plasticizer Concentration on the Color, Opacity, and Thermal and Mechanical Properties of Films Based on PVA and Gelatin Blends. Journal of Food Engineering, 87, 191-199.
http://dx.doi.org/10.1016/j.jfoodeng.2007.11.026

[25]   Seo, K.H., Chun, H.J., Lee, W.K. and Nho, Y.C. (2009) In Vitro and in Vivo Biocompatibility of R-Ray Crosslinked Gelatin-Poly (Vinyl Alcohol) Hydrogels. Tissue Engineering and Regenerative Medicine, 6, 414-418.

[26]   Liu, Y., Vrana, N., Cahill, P. and McGuinness, G. (2009) Physically Crosslinked Composite Hydrogels of PVA with Natural Macromolecules: Structure, Mechanical Properties, and Endothelial Cell Compatibility. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90, 492-502.
http://dx.doi.org/10.1002/jbm.b.31310

[27]   Pal, K., Banthia, A.K. and Majumdar, D.K. (2007) Biomedical Evaluation of Polyvinyl Alcohol-Gelatin Esterified Hydrogel for Wound Dressing. Journal of Materials Science: Materials in Medicine, 18, 1889-1894.
http://dx.doi.org/10.1007/s10856-007-3061-2

[28]   Pawde, S.M. and Deshmukh, K. (2008) Characterization of Polyvinyl Alcohol/Gelatin Blend Hydrogel Films for Biomedical Applications. Journal of Applied Polymer Science, 109, 3431-3437.
http://dx.doi.org/10.1002/app.28454

[29]   Pal, K., Banthia, A.K. and Majumdar, D.K. (2007) Preparation and Characterization of Polyvinyl Alcohol-Gelatin Hydrogel Membranes for Biomedical Applications. AAPS Pharm SciTech, 8, 21.
http://dx.doi.org/10.1208/pt080121

[30]   Vrana, N.E., Cahill, P.A. and McGuinness, G.B. (2010) Endothelialization of PVA/Gelatin Cryogels for Vascular Tissue Engineering: Effect of Disturbed Shear Stress Conditions. Journal of Biomedical Materials Research Part A, 94, 1080-1090.
http://dx.doi.org/10.1002/jbm.a.32790

[31]   Pal, K., Banthia, A. and Majumdar, D. (2007) Biomedical Evaluation of Polyvinyl Alcohol-Gelatin Esterified Hydrogel for Wound Dressing. Journal of Materials Science: Materials in Medicine, 18, 1889-1894.
http://dx.doi.org/10.1007/s10856-007-3061-2

[32]   Maria, T.M., De Carvalho, R.A., Sobral, P.J., Habitante, A.M.B. and Solorza-Feria, J. (2008) The Effect of the Degree of Hydrolysis of the PVA and the Plasticizer Concentration on the Color, Opacity, and Thermal and Mechanical Properties of Films Based on PVA and Gelatin Blends. Journal of Food Engineering, 87, 191-199.
http://dx.doi.org/10.1016/j.jfoodeng.2007.11.026

[33]   Mendieta-Taboada, O., Sobral, P.J.D.A., Carvalho, R.A. and Habitante, A.M.B. (2008) Thermomechanical Properties of Biodegradable Films Based on Blends of Gelatin and Poly (Vinyl Alcohol). Food Hydrocolloids, 22, 1485-1492.
http://dx.doi.org/10.1016/j.foodhyd.2007.10.001

[34]   Pal, K., Banthia, A. and Majumdar, D. (2006) Polyvinyl Alcohol—Gelatin Patches of Salicylic Acid: Preparation, Characterization and Drug Release Studies. Journal of Biomaterials Applications, 21, 75-91.
http://dx.doi.org/10.1177/0885328206056312

[35]   Bajpai, A. and Saini, R. (2005) Preparation and Characterization of Biocompatible Spongy Cryogels of Poly (Vinyl Alcohol)—Gelatin and Study of Water Sorption Behaviour. Polymer international, 54, 1233-1242.
http://dx.doi.org/10.1002/pi.1813

[36]   You, S.J., Ahn, W.S., Jang, H.S., Kang, M.I., Chun, H.J., Lim, Y.M., et al. (2007) Preparation and Characterization of Gelatin-Poly (Vinyl Alcohol) Hydrogels for Three-Dimensional Cell Culture. Journal of Industrial and Engineering Chemistry, 13, 116-120.

[37]   Pawde, S. and Deshmukh, K. (2008) Characterization of Polyvinyl Alcohol/Gelatin Blend Hydrogel Films for Biomedical Applications. Journal of Applied Polymer Science, 109, 3431-3437.
http://dx.doi.org/10.1002/app.28454

[38]   Pal, K., Banthia, A.K. and Majumdar, D.K. (2007) Preparation and Characterization of Polyvinyl Alcohol-Gelatin Hydrogel Membranes for Biomedical Applications. Aaps Pharmscitech, 8, E142-E146.
http://dx.doi.org/10.1208/pt080121

[39]   Van der Linden, J.C., Waarsing, J.H. and Weinans, H. (2006) The Use of Micro-CT to Study Bone Architecture Dynamics Noninvasively. Drug Discovery Today: Technologies, 3, 213-219.
http://dx.doi.org/10.1016/j.ddtec.2006.06.006

[40]   Park, S.Y., Kim, K.H., Koo, K.T., Lee, K.W., Lee, Y.M., Chung, C.P., et al. (2011) The Evaluation of the Correlation between Histomorphometric Analysis and Micro-Computed Tomography Analysis in AdBMP-2 Induced Bone Regeneration in Rat Calvarial Defects. Journal of Periodontal & Implant Science, 41, 218-226.
http://dx.doi.org/10.5051/jpis.2011.41.5.218

 
 
Top