JACEN  Vol.5 No.3 , August 2016
Effect of Electric Field on the Kinetics of Growth of Lettuce (Lactuca sativa) in a Hydroponic System
Abstract: The implementation of alternative harvest systems which are able to accelerate the kinetics of growth of plants, is extremely important to decrease the time of crop. In this sense, Electro-Hydroponic culture, i.e., the application of an electric field in the nutrient solution of the hydroponic culture emerges as an alternative and interesting harvest system. The objective of the present study was to investigate the effect of the electric field applying different intensities of direct current (DC) at the galvanostatic regime (50, 37.5, 25 and 12.5 mA) on the growth of lettuce (Lactuca sativa) plants in hydroponic culture. Fifty lettuce plants were used in a nutrient solution, from which 4 groups composed of ten lettuces each one, were subjected at 12.5, 25, 37.5 and 50 mA, respectively. A fifth group of ten lettuces was used as a reference test, i.e., without application of DC. The experiments were carried out during 16 days. The results reveal that the kinetics of growth of the lettuce is dependent on the applied current; actually it is observed an increase in the foliate area of the plants cultivated in the presence of DC than that obtained in the reference test. Furthermore, the plants subjected at 12.5 mA, revealed an increase in the foliate area of 65.3% and 73.2% in comparison with the reference test.
Cite this paper: Fuentes-Castañeda, O. , Domínguez-Patiño, M. , Domínguez-Patiño, J. , Melgoza-Alemán, R. and Villegas-Torres, O. (2016) Effect of Electric Field on the Kinetics of Growth of Lettuce (Lactuca sativa) in a Hydroponic System. Journal of Agricultural Chemistry and Environment, 5, 113-120. doi: 10.4236/jacen.2016.53013.

[1]   Marfá, O. (2000) Los cultivos sin suelo desde una perspectiva mediterránea. In: Ediciones de Horticultura, S.L., Ed., Recirculación en cultivos sin suelo, Barcelona, 11-20.

[2]   Favela-Chávez, E., Preciado-Rangel, P. and Benavides-Mendoza, A. (2006) Manual para la preparación de soluciones nutritivas. Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, Torreón, 7-146.

[3]   De Rijck, G. and Schrevens, E. (1998) Cationic Speciation in Nutrient Solutions as a Function of pH. Journal of Plant Nutrition, 21, 861-870.

[4]   Amiri, M. and Sattary, N. (2004) Mineral Precipitation in Solution Culture. Acta Horticulturae, 644, 469-471.

[5]   Jaques-Hernández, C. and Hernández-M, J.L. (2005) Valoración productiva de la lechuga hidropónica con la técnica de película de nutrientes (NFT). Transferencia de Tecnología, Centro de Biotecnología Genómica del IPN, Tamaulipas, 11-16.

[6]   Lemström, S. (2008) Electricity in Agriculture and Horticulture. BiblioBazar Reproduction, LLC, Charleston, 1-72.

[7]   Bi, R., Schlaak, M., Siefert, E., Lord, R. and Connolly, H. (2010) Alternating Current Electrical Field on Lettuce (Lactuca sativa) Growing in Hydroponic Culture with and without Cadmium Contamination. Journal of Applied Electrochemistry, 40, 1217-1223.

[8]   Myeong, W.S., Sik Yang, D., Kays, S.J., Jun-Hong, K., Ho Woo, J. and Woo Park, K. (2009) Effects of Nutrient Solution Electrical Conductivity and Sulfur, Magnesium, and Phosphorus Concentration on Sesquiterpene Lactones in Hydroponically Grown Lettuce (Lactuca sativa L.). Scientia Horticulturae, 122, 369-374.

[9]   Mahmoudi, H., Kaddour, R., Huang, J., Nasri, N., Olfa, B., M’Rah, S., Hannoufa, A., Lachaal, M. and Ouerghi, Z. (2011) Varied Tolerance to NaCl Salinity Is Related to Biochemical Changes in Two Contrasting Lettuce Genotypes. Acta Physiologiae Plantarum, 33, 1613-1622.

[10]   Carrasco, G. and Izquierdo, J. (1996) Manual Técnico. La empresa hidropónica de mediana escala: La técnica de la solución nutritiva recirculante (NFT). Oficina Regional de la FAO para América Latina y el Caribe, 3-62.


[12]   GRC Agroindustrial, S.A. (2007) Consultado en.

[13]   Steiner, A.A. (1984) The Universal Nutrient Solution. Sixth International Congress on Soilless Culture, Wageningen, 633-650.