AM  Vol.7 No.12 , July 2016
Rough Sets for Human Resource Competence Evaluation and Experiences
Abstract: The evaluation of labor competences is an important activity for proper management of human resources. To assess labor competences, different techniques have been proposed, but these proposals represent invasive mechanisms so that its implementation affects the efficiency of the project, and do not store the experiences for further processing. The aim of this paper is to propose two alternative algorithms to recover the evidences of performance of human resources by identifying their relationship with labor competences, using rough sets and text distance. The experimental application of the algorithms demonstrated efficiency levels in line with the human evaluators and efficiency improvement in the evaluation process, compared with methods like 360 degrees.
Cite this paper: López, S. , Aguilar, G. , Pupo, I. , Pérez, P. and Diéguez, L. (2016) Rough Sets for Human Resource Competence Evaluation and Experiences. Applied Mathematics, 7, 1317-1325. doi: 10.4236/am.2016.712116.

[1]   Gil, J. (2007) La evaluación de competencias laborales. Educación XX1, 10, 83-106.

[2]   Ogheneovo, E.E. (2014) Software Dysfunction: Why Do Software Fail. Journal of Computer and Communications, 2, 25-35.

[3]   Gomes, S.R. (2009) Uma Abordagem para a Gerência de Recursos Humanos de Organiza??es de Software. Ph.D. Thesis, Universidad de Fortaleza, Fortaleza.

[4]   Neil, D. (2006) Proyectos Informáticos: Fracasos y Lecciones Aprendidas. Revista de Derecho y Tecnologías de la Información, 4, 1-11.

[5]   PMI (2013) Guía de los Fundamentos de la Dirección de Proyectos. 5th Edition, Project Management Institute Publications, Pennsylvania.

[6]   Pérez, I., Bello, R., Pi?ero, P., Lugo, J.A. and Torres, S. (2013) Aprendizaje de reglas borrosas para la toma de decisiones en Gestión de proyectos. IV Congreso Iberoamericano de Ingeniería de Proyectos, Pucón.

[7]   Torres, S. (2015) Modelo de evaluación de competencias a partir de evidencias durante la gestión de proyectos. Ph.D. Thesis, Universidad de las Ciencias Informáticas, La Habana.

[8]   Cuesta, A. (2010) Tecnología de Gestión de los Recursos Humanos. Tercera ed., Editorial Félix Varela, La Habana.

[9]   Bello, R. and Verdegay F. (2010) Los conjuntos aproximados en el contexto de la Soft Computing. Revista Cubana de Ciencias Informáticas, 4, 5-24.

[10]   Pawlak, Z. (1982) Rough Sets. International Journal of Information & Computer Sciences, 11, 341-356.

[11]   Orlowska, E. (Ed.) (1998) Incomplete Information, Rough Sets Analysis. Physica-Verlag, Warsaw.

[12]   Pawlak, Z. and Skowron, A. (2007) Rough Sets: Some Extensions. Information Sciences, 177, 28-40.

[13]   Pawlak, Z. (1991) Rough Sets-Theorical Aspects of Reasoning about Data. Kluwer Acadenic, Dondrech.

[14]   Skowron, A. and Suraj, Z. (2012) Rough Sets and Intelligent Systems—Professor Zdzis?awPawlak in Memoriam, Volumen 1. Springer Science & Business Media, Berlin.

[15]   Pawlak, Z. and Skowron, A. (2007) Rudiments of Rough Sets. Information Sciences, 177, 3-27.

[16]   Greco, S., Matarazzo, B. and Slowinski, R. (1997) Similarity Relation as a Basis for Rough Approximations. In: Polkowski, L., Ed., Rough Sets and Current Trends in Computing, Springer, Berlin, 60-67.

[17]   Slowinski, R. and Vanderpooten, D. (2000) A Generalized Definition of Rough Approximations Based on Similarity. IEEE Transactions on Data and Knowledge Engineering, 12, 331-336.

[18]   Strohmeier, S. and Piazza, F. (2015) Artificial Intelligence Techniques in Human Resource Management—A Conceptual Exploration, de Intelligent Techniques in Engineering Management. Springer International Publishing, Cham, 149-172.

[19]   Zhukova, I., Kultsova, M. and Navrotsky, M. (2014) Intelligent Support of Decision Making in Human Resource Management Using Case-Based Reasoning and Ontology, de Knowledge-Based Software Engineering, Springer International Publishing, Volgograd, 172-184.

[20]   López, B. (2013) Case-based Reasoning: A Concise Introduction. Morgan & Claypool Publishers, Texas, 21-36.

[21]   Cross, V. and Sudkamp, T. (2002) Similarity and Compatibility in Fuzzy Set Theory. Assessment and Applications. Springer-Verlag Company, New York.

[22]   Torres, S., Pi?ero, Y., Pi?ero, P. and Capretz, L. (2014) Creation and Evaluation of Software Teams—A Social Approach. International Journal of Manufacturing Technology and Management, 28, 1741-5195.