AM  Vol.2 No.8 , August 2011
Enveloping Lie Algebras of Low Dimensional Leibniz Algebras
Abstract: We calculate the enveloping Lie algebras of Leibniz algebras of dimensions two and three. We show how these Lie algebras could be used to distinguish non-isomorphic (nilpotent) Leibniz algebras of low dimension in some cases. These results could be used to associate geometric objects (loop spaces) to low dimensional Leibniz algebras.
Cite this paper: nullM. Amini, I. Rakhimov and S. Langari, "Enveloping Lie Algebras of Low Dimensional Leibniz Algebras," Applied Mathematics, Vol. 2 No. 8, 2011, pp. 1027-1030. doi: 10.4236/am.2011.28142.

[1]   J. L. Loday, “Une version non-commutative des algebras de Lie, Les algebres de Leibniz,” Mathematics at Ecole Normale Supérieure, Vol. 39, 1993, pp. 269-293.

[2]   R. E. Beck and B. Kolman, “Constructions of Nilpotent Lie Algebras over Arbitrary Fields,” In: P. S. Wang, Ed., Proceedings of 1981 ACM Symposium on Symbolic and Algebraic Computation, New York, 1981, pp. 169-174.

[3]   M. K. Kinyon and A. Weinestein, “Leibniz Algebras, Courant Algebroids, and Multiplications on Homogeneous Spaces,” American Journal of Mathematics, Vol. 123, No. 3, 2001, pp. 525-550. doi:10.1353/ajm.2001.0017

[4]   S. Albeverio, B. A. Omirov and I. S. Rakhimov, “Varieties of Nilpotent Complex Leibniz Algebras of Dimension Less Than Five,” Communications in Algebra, Vol. 33, No. 5, 2005, pp. 1575-1585. doi:10.1081/AGB-200061038