Constructing a Subsequence of (Exp(in))n∈N Converging towards Exp(iα) for a Given α∈R

Show more

References

[1] Aliprantis, C.D. and Burkinshaw, O. (1999) Problems in Real Analysis—A Workbook with Solutions. Academic Press, Inc., San Diego.

[2] Rădulescu, T.-L.T., Rădulescu, V.D. and Andreescu, T. (2009) Problems in Real Analysis—Advanced Calculus on the Real Axis. Springer, Dodrecht, Heidelberg, New York.

http://dx.doi.org/10.1007/978-0-387-77379-7

[3] Staib, J.H. and Demos, M.S. (1967) On the Limit Points of the Sequence {sin n }. Mathematics Magazine, 40, 210-213.

http://dx.doi.org/10.2307/2688681

[4] Ogilvy, S.C. (1969) The Sequence {sin n } . Mathematics Magazine, 42, 94.

[5] Luca, F. (1999) {(cos(n))^{n}} _{n≥1} is dense in[-1,1] . Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie—Nouvelle Série, 42, 369-376.

[6] Ahmadi, M.F. and Hedayatian, K. (2006) Limit Points of Trigonometric Sequences. Journal of Mathematical Extension, 1, 21-26.

[7] Zheng, S. and Cheng, J.C. (1999) Density of the Images of Integers under Continuous Functions with Irrational Periods. Mathematics Magazine, 72, 402-404.

http://dx.doi.org/10.2307/2690800

[8] Wolfram, S. (1988-2008) Mathematica—Version 8.0. Wolfram Research, Inc., Champaign, IL.