Back
 APD  Vol.5 No.3 , August 2016
Temporal Aspects of Global Coherence during Discourse Production in Early Stage Parkinson’s Disease
Abstract: Introduction: Parkinson’s Disease (PD) is a devastating neurodegenerative disease that significantly influences motor performance. Recent studies suggest expressive language deficits may also exist among individuals with PD even though the condition is primarily known for changes in motor skills. The purpose of this pilot study was to examine the influence of early stage PD on global coherence or the ability to maintain consistency of a theme or topic. Methods: Discourse samples were collected from eleven individuals with PD and compared to eleven matched controls to examine measures of global coherence. Two-minute speech samples describing a “typical day” were transcribed and rated on mean global coherence and percentage high global coherence. Results: Greater declines in global coherence were observed among individuals with PD, however, comparisons of both mean global coherence ratings and percentage high global coherence were not statistically significant between the two groups. A significant downward linear trend was observed for both mean global coherence ratings and percentage high coherence among all participants indicating decreases in global coherence over time. Conclusion: Approaches to the study of global coherence as a measure of expressive language performance should consider the temporal changes especially among neurological conditions known to reduce expressive language ability.
Cite this paper: Ellis, C. , Fang, X. and Briley, P. (2016) Temporal Aspects of Global Coherence during Discourse Production in Early Stage Parkinson’s Disease. Advances in Parkinson's Disease, 5, 41-49. doi: 10.4236/apd.2016.53006.
References

[1]   World Health Organization (2006) Neurological Disorders: Public Health Challenges. 140-150. http://www.who.int/mental_health/neurology/neurological_disorders_report_web.pdf

[2]   Mateus, C. and Coloma, J. (2013) Health Economics and Cost of Illness in Parkinson’s Disease. European Neurological Reviews, 8, 6-9. http://dx.doi.org/10.17925/ENR.2013.08.01.6

[3]   National Parkinson Foundation (2016). http://www.parkinson.org/sites/default/files/Parkinsonism.pdf

[4]   Stocchi, F., Martinez-Martin, P. and Reichmann, H. (2014) Quality of Life in Parkinson’s Disease—Patient, Clinical and Research Perspectives. European Neurological Reviews, 9, 12-18. http://dx.doi.org/10.17925/ENR.2014.09.01.12

[5]   Braak, H., Del Tredici, K., Rub, U., de Vos, R.A., Jansen Steur, E.N. and Braak, E. (2003) Staging of Brain Pathology Related to Sporadic Parkinson’s Disease. Neurobiology of Aging, 24, 197-211. http://dx.doi.org/10.1016/S0197-4580(02)00065-9

[6]   Aarsland, D., Bronnick, K., Larsen, J.P., Tysnes, O.B., Alves, G., and for the Norweigian Park West Study Group (2009) Cognitive Impairment in Incident Untreated Parkinson Disease. Neurology, 72, 1121-1126. http://dx.doi.org/10.1212/01.wnl.0000338632.00552.cb

[7]   Williams-Gray, C.H., Foltynie, T., Brayne, C.E.G., Robbins, T.W. and Barker, R.A. (2007) Evolution of Cognitive Dysfunction in an Incident Parkinson’s Disease Cohort. Brain, 130, 1787-1798.
http://dx.doi.org/10.1093/brain/awm111

[8]   Litvan, I., Aarsland, D., Adler, C.H., Goldman, J.G., Kulisevsky, J., Mollenhauer, B., et al. (2011) MDS Task Force on Mild Cognitive Impairment in Parkinson’s Disease: Critical Review of PD-MCI. Movement Disorders, 26, 1814-1824. http://dx.doi.org/10.1002/mds.23823

[9]   Middleton, F.A. and Strick, P.L. (2000) Basal Ganglia and Cerebellar Loops: Motor and Cognitive Circuits. Brain Research Reviews, 31, 236-250. http://dx.doi.org/10.1016/s0165-0173(99)00040-5

[10]   Middleton, F.A. and Strick, P.L. (2000) Basal Ganglia Output and Cognition: Evidence from Anatomical, Behavioral, and Clinical Studies. Brain and Cognition, 42, 183-200.
http://dx.doi.org/10.1006/brcg.1999.1099

[11]   Alexander, M.P. (2002) Disorders of Language after Frontal Lobe Injury: Evidence for the Neural Mechanisms of Assembling Language. In: Stuss, D.T. and Knight, R.T., Eds., Principles of Frontal Lobe Function, Oxford University Press, New York, 159-167.
http://dx.doi.org/10.1093/acprof:oso/9780195134971.003.0010

[12]   Salmon, D.P., Heindel, W.C. and Hamilton, J.M. (2001) Cognitive Abilities Mediated by Frontal-Subcortical Circuits. In: Litcher, D.G. and Cummings, J.L., Eds., Frontal-Subcortical Circuits in Psychiatric and Neurological Disorders, Guilford Press, New York, 114-150.

[13]   Murray, L. (2008) Language and Parkinson’s Disease. Annual Review of Applied Linguistics, 28, 113-127. http://dx.doi.org/10.1017/S0267190508080100

[14]   Altmann, L.J. and Troche M.S. (2011) High-Level Language Production in Parkinson’s Disease: A Review. Parkinsons Disease, 2011, Article ID: 238956.

[15]   Braak, H., Rub, U. and Del Tredici, K. (2006) Cognitive Decline Correlates with Neuropathological Stage in Parkinson’s Disease. Journal of Neurological Sciences, 248, 255-258.
http://dx.doi.org/10.1016/j.jns.2006.05.011

[16]   Braak, H., Rub, U., Jansen Steur, E.N., Del Tredici, K. and de Vos, R.A. (2005) Cognitive Status Correlates with Neuropathologic Stage in Parkinson Disease. Neurology, 64, 1404-1410.
http://dx.doi.org/10.1212/01.WNL.0000158422.41380.82

[17]   Ash, S., Moore, P., Antani, S., McCawley, G., Work, M. and Grossman, M. (2006) Trying to Tell a Tale: Discourse Impairments in Progressive Aphasia and Frontotemporal Dementia. Neurology, 66, 1405-1413. http://dx.doi.org/10.1212/01.wnl.0000210435.72614.38

[18]   Fergadiotis, G. and Wright, H.H. (2011) Lexical Diversity for Adults with and without Aphasia across Discourse Elicitation Tasks. Aphasiology, 25, 1414-1430.
http://dx.doi.org/10.1080/02687038.2011.603898

[19]   Glosser, G. and Deser, T. (1991) Patterns of Discourse Production among Neurological Patients with Fluent Language Disorders. Brain and Language, 40, 67-88. http://dx.doi.org/10.1016/0093-934X(91)90117-J

[20]   Coelho, C.A. and Flewellyn, L. (2003) Longitudinal Assessment of Coherence in an Adult with Fluent Aphasia: A Follow-Up Study. Aphasiology, 17, 173-182. http://dx.doi.org/10.1080/729255216

[21]   Hough, M.S. and Barrow, I. (2000) Descriptive Discourse Abilities of Traumatic Brain Injured Adults. Aphasiology, 17, 183-191. http://dx.doi.org/10.1080/729255221

[22]   Van Leer, E. and Turkstra, L. (1999) The Effect of Elicitation Task on Discourse Coherence and Cohesion in Adolescents with Brain Injury. Journal of Communication Disorders, 32, 327-349. http://dx.doi.org/10.1016/S0021-9924(99)00008-8

[23]   Rogalski, Y. and Edmonds, L.A. (2008) Attentive Reading and Constrained Summarisation (ARCS) Treatment in Primary Progressive Aphasia: A Case Study. Aphasiology, 22, 763-775. http://dx.doi.org/10.1080/02687030701803796

[24]   Dijkstra, K., Bourgeois, M.S., Allen, R.S. and Burgio, L.D. (2004) Conversational Coherence: Discourse Analysis of Older Adults with and without Dementia. Journal of Neurolinguistics, 17, 263-283. http://dx.doi.org/10.1016/S0911-6044(03)00048-4

[25]   Sanchez, J. and Spencer, K.A. (2013) Preliminary Evidence of Discourse Improvement with Dopaminergic Medication. Advances in Parkinson’s Disease, 2, 37-42.
http://dx.doi.org/10.4236/apd.2013.22007

[26]   Marini, A., Carlomagno, S., Caltagirone, C. and Nocentini, U. (2005) The Role Played by the Right Hemisphere in the Organization of Complex Textual Structures. Brain and Language, 93, 46-54. http://dx.doi.org/10.1016/j.bandl.2004.08.002

[27]   Wright, H.H., Koutsoftas, A.D., Capilouto, G.J. and Fergadiotis, G. (2014) Global Coherence in Younger and Older Adults: Influence of Cognitive Processes and Discourse Type. Aging, Neuropsychology, and Cognition: A Journal on Normal and Dysfunctional Development, 21, 174-196.
http://dx.doi.org/10.1080/13825585.2013.794894

[28]   Ellis, C., Henderson, A., Wright, H.H. and Rogalski, Y. (2016) Global Coherence during Discourse Production in Adults: A Review of the Literature. International Journal of Language & Communication Disorders, 51, 359-367. http://dx.doi.org/10.1111/1460-6984.12213

[29]   Hoehn, M.M. and Yahr, M.D. (1967) Parkinsonism: Onset, Progression and Mortality. Neurology, 17, 427-442. http://dx.doi.org/10.1212/WNL.17.5.427

[30]   Bower, J.H., Maraganore, D.M., McDonnell, S.K. and Rocca, W.A. (2000) Influence of Strict, Intermediate, and Broad Diagnostic Criteria on the Age- and Sex-Specific Incidence of Parkinson’s Disease. Movement Disorders, 15, 819-825.
http://dx.doi.org/10.1002/1531-8257(200009)15:5<819::AID-MDS1009>3.0.CO;2-P

[31]   Folstein, M.F., Folstein, S.E. and McHugh, P.R. (1975) “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. Journal of Psychiatric Research, 12, 189-198. http://dx.doi.org/10.1016/0022-3956(75)90026-6

[32]   Kaplan, E., Goodglass, H. and Weintraub, S. (1983) Boston Naming Test. Lea & Febiger, Philadelphia.

[33]   Wechsler, D. (1997) Wechsler Memory Scale. 3rd Edition Manual, Psychological Corporation, San Antonio.

[34]   Hunt, K.W. (1965) Grammatical Structures Written at Three Grade Levels. National Council of Teachers of English Research Report No. 3, National Council of Teachers of English, Urbana.

[35]   Batens, K., De Letter, M., Raedt, R., Duyck, W., Vanhoutte, S., Van Roost, D. and Santens, P. (2014) The Effects of Subthalamic Nucleus Stimulation on Semantic and Syntactic Performance in Spontaneous Language Production in People with Parkinson’s Disease. Journal of Neurolinguistics, 32, 31-41. http://dx.doi.org/10.1016/j.jneuroling.2014.07.003

[36]   Kurczek, J. and Duff, M.S. (2011) Cohesion, Coherence and Declarative Memory: Discourse Patterns in Individuals with Hippocampal Amnesia. Aphasiology, 25, 700-712.
http://dx.doi.org/10.1080/02687038.2010.537345

[37]   Whitehead, B. (2010) The Psychosocial Impact of Communication Changes in People with Parkinson’s Disease. British Journal of Neuroscience Nursing, 6, 30-36.
http://dx.doi.org/10.12968/bjnn.2010.6.1.46056

 
 
Top