Back
 OALibJ  Vol.2 No.12 , December 2015
Cumulative Perturbations Affecting a Spacecraft on a Mars Equatorial Orbit from the Waxing and Waning of the Polar Caps of the Planet
Abstract: We demonstrate in this paper that periodic variations of the J2 gravity coefficient of a planet induce small cumulative perturbations on a given family of circular equatorial orbits, and that these perturbations could be measurable with current radiosciences technology. For this purpose, we first consider a Poincaré expansion of the Newtonian equations of motion. Then, by using Floquet’s theory, we demonstrate that, unlike the excitation mechanism, the perturbations are non-periodic, and that the orbit is not “stable” in the long-term, with perturbations growing exponentially. We give the full theory and an application to the case of planet Mars.
Cite this paper: Barriot, J. (2015) Cumulative Perturbations Affecting a Spacecraft on a Mars Equatorial Orbit from the Waxing and Waning of the Polar Caps of the Planet. Open Access Library Journal, 2, 1-9. doi: 10.4236/oalib.1102272.
References

[1]   Chao, B.F. and Rubincam, D.P. (1990) Variations of Mars Gravitational Field and Rotation Due to Seasonal CO2 Exchanges. Journal of Geophysical Research, 95, 14755-14760.
http://dx.doi.org/10.1029/JB095iB09p14755

[2]   Karatekin, O., Duron, J., Rosenblatt, P., Van Hoolst, T., Dehant, V. and Barriot, J.P. (2005) Mar’s Time-Variable Gravity and Its Determination: Simulated Geodesy Experiments. Journal of Geophysical Research—Planets, 110, E06001.
http://dx.doi.org/10.1029/2004JE002378

[3]   Mioc, V. and Stavinschi, M. (2004) Stability of Satellite Orbits around Nonspherical Planets. Artificial Satellites, 39, 129-133.

[4]   Jezewski, D.J. (1983) A Noncanonical Analytic Solution to the J2 Perturbed Two-Body Problem. Celestial Mechanics, 30, 343-361.
http://dx.doi.org/10.1007/BF01375505

[5]   Jezewski, D.J. (1983) An Analytical Solution for the J2 Perturbed Equatorial Orbit. Celestial Mechanics, 30, 363-371.
http://dx.doi.org/10.1007/BF01375506

[6]   Chazy, J. (1953) Mécanique Céleste. Presses Universitaires de France, Paris.

[7]   Dieudonné, J. (1980) Calcul Infinitésimal. Hermann Ed., Paris.

[8]   Angot, A. (1972) Compléments de Mathématiques. Masson et Cie Ed., Paris.

[9]   Walter, W. (1998) Ordinary Differential Equations. Springer, New-York.

[10]   Roseau, M. (1976) Equations différentielles. Masson, Paris.

[11]   Vijayaraghavan, A. (1984) An Analytic Solution for the Orbital Perturbations of the Venus Radar Mapper Due to Gravitational Harmonics. AIAA/AAS Astrodynamics Conference, Paper AIAA-84-1995.

[12]   Mioc, V. and Stavinschi, M. (1998) Stability of Satellite Motion in the Equatorial Plane of the Rotating Earth. Proceedings of the Journées des Systèmes de Référence Spatio-Temporels, N. Capitaine Ed., 257-261.

[13]   Mioc, V. and Stavinschi, M. (2001) Effects of Mars’ Rotation on Orbiter Dynamics. Proceedings of the Journées des Systèmes de Référence Spatio-Temporels, N. Capitaine Ed, 120-125.

[14]   Mioc, V. and Stavinschi, M. (2003) Stability of Equatorial Satellite Orbits. Proceedings of the Journées des Systèmes de Référence Spatio-Temporels, N. Capitaine Ed., 255-258.

[15]   Folkner, W.M., Yoder, C.F., Yuan, D.N., Standish, E.M. and Preston, R.A. (1997) Interior Structure and Seasonal Mass Redistribution of Mars from Radio Tracking of Mars Pathfinder. Science, 278, 1749-1752.
http://dx.doi.org/10.1126/science.278.5344.1749

[16]   Lemoine, F.G., Smith, D.E., Rowlands, D.D., Zuber, M.T., Neumann, G.A., Chinn, D.S. and Pavlis, D.E. (2001) An Improved Solution of the Gravity Field of Mars (GMM-2B) from Mars Global Surveyor. Journal of Geophysical Research, 106, 23359-23376.
http://dx.doi.org/10.1029/2000JE001426

[17]   Moyer, T.D. (2000) Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation. Monograph 2, Deep Space Communications and Navigation Series, JPL Publication 00-7.

[18]   Yoder, C.F., Williams, J.G., Dickey, J.O., Schutz, B.E., Eanes, R.J. and Tapley, B.D. (1983) Secular Variation of Earth’s Gravitational Harmonic J2 Coefficient from LAGEOS and Non-Tidal Acceleration of Earth’s Rotation. Nature, 303, 757-762.
http://dx.doi.org/10.1038/303757a0

[19]   Samain, E. (2002) One Way Laser Ranging on the Solar System: TIPO. Geophysical Research Abstracts, 4, Article ID: 05808.

[20]   Hu, W. and Scheeres, D.J. (2004) Numerical Determination of Stability Regions for Orbital Motion in Uniformly Rotating Second Degree and Order Gravity Fields. Planetary and Space Science, 52, 685-692.
http://dx.doi.org/10.1016/j.pss.2004.01.003

 
 
Top