New Theory of Superconductivity. Method of Equilibrium Density Matrix. Magnetic Field in Superconductor

Show more

References

[1] Kamerlingh-Onnes, H. (1911) Further Experiments with Liquid Helium. On the Change of Electric Resistance of Pure Metals at Very Low Temperatures, etc. IV. The Resistance of Pure Mercury at Helium Temperatures. Comm Phys Lab Univ Leiden, 122, 13-15.

[2] Meissner, W. and Ochsenfeld, R. (1933) Ein neuer Effekt bei eintritt der Supraleitfähigkeit. Naturwissenschaften, 21, 787-788.

http://dx.doi.org/10.1007/BF01504252

[3] Abrikosov, A.A. (1952) Современное состояние проблемы сверхпроводимости. Proceedings of Academy of Science of the USSR, 86, 489;

Abrikosov, A.A. (1965) Современное состояние проблемы сверхпроводимости. Uspekhi Fizicheskih Nauk, 87, 125-142.

http://dx.doi.org/10.3367/UFNr.0087.196509h.0125

[4] Ginszburg, V.L. and Landau, L.D. (1950) Towards the Theory of Superconductivity. Journal of Experimental and Theoretical Physics, 20, 1064.

[5] Bardeen, J., Cooper, L.N. and Schrieffer, J.R. (1957) Microscopic Theory of Superconductivity. Physical Review, 106, 162-164.

http://dx.doi.org/10.1103/PhysRev.106.162

[6] Von Neumann, J. (1964) Mathematical Foundations of Quantum Mechanics. Nauka, Moscow.

[7] Shen, Y.R. (1967) Quantum Statistics of Nonlinear Optics. Physical Review, 155, 921-931.

http://dx.doi.org/10.1103/PhysRev.155.921

[8] Grover, M. and Silbey, R. (1970) Exciton-Phonon Interactions in Molecular Crystals. Journal of Chemical Physics, 52, 2099-2108.

http://dx.doi.org/10.1063/1.1673263

[9] Kossakowski, A. (1972) On Quantum Statistical Mechanics of Non-Hamiltonian Systems. Reports on Mathematical Physics, 3, 247-274.

http://dx.doi.org/10.1016/0034-4877(72)90010-9

[10] Gorini, V., Kossakowski, A. and Sudarshan, E.C.G. (1976) Completely Positive Dynamical Semigroups of N-Level Systems. Journal of Mathematical Physics, 17, 821-825.

http://dx.doi.org/10.1063/1.522979

[11] Lindblad, G. (1976) On the Generators of Quantum Dynamical Semigroups. Communications in Mathematical Physics, 48, 119-130.

http://dx.doi.org/10.1007/BF01608499

[12] Gorini, V., Frigeio, A., Verri, N., Kossakowski, A. and Sudarshan, E.C.G. (1978) Properties of Quantum Markovian Master Equations. Reports on Mathematical Physics, 13, 149-173.

http://dx.doi.org/10.1016/0034-4877(78)90050-2

[13] Blum, K. (1981) Density Matrix Theory and Ap-plication. Plenum, New York and London.

http://dx.doi.org/10.1007/978-1-4615-6808-7

[14] Bondarev, B.V. (1991) Quantum Markovian Master Equation for System of Identical Particles Interacting with a Heat Reservoir. Physica A, 176, 366-386.

http://dx.doi.org/10.1016/0378-4371(91)90294-M

[15] Bondarev, B.V. (1992) Quantum Markovian Master Equation Theory of Particle Migration in a Stochastic Medium. Physica A, 183, 159-174.

http://dx.doi.org/10.1016/0378-4371(92)90183-Q

[16] Bondarev, B.V. (1992) Quantum Lattice Gas. Method of Density Matrix. Physica A, 184, 205-230.

http://dx.doi.org/10.1016/0378-4371(92)90168-P

[17] Bondarev, B.V. (1994) Derivation of Quantum Kinetic Equation from the Liouvillevon Neumann Equation. Teor. Mat. Fiz., 100, 33-43.

[18] Bondarev, B.V. (1996) On Some Peculiarities of Electrons Distribution Function over the Bloch States. Vestnik MAI, 3, 56-65.

[19] Bondarev, B.V. (2013) Density Matrix Method in Cooperative Phenomena Quantum Theory. 2nd Edition, Sputnik+, Moscow.

[20] Bondarev, B.V. (2013) New Theory of Superconductivity. Method of Equilibrium Density Matrix.

http://arxiv.org/abs/1412.6008

[21] Bondarev, B.V. (2013) Fermi—Dirac Function and Energy Gap.

http://arxiv.org/abs/1412.6009

[22] Bondarev, B.V. (2013) Anisotropy and Superconductivity.

http://arxiv.org/abs/1302.5066

[23] Bondarev, B.V. (2014) Matrix Density Method in Quantum Superconductivity Theory. Sputnik+, Moscow.

[24] Bondarev, B.V. (2015) Gapless Superconductivity. International Journal of Physics, 3, 88-95.

http://dx.doi.org/10.12691/ijp-3-2-7

[25] Bondarev, B.V. (2015) Method of Equilibrium Density Matrix. Energy of Interacting Valence Electrons in Metal. International Journal of Physics, 3, 108.