Back
 AM  Vol.7 No.12 , July 2016
The Effect of Variations in Ionic Conductance Values on the Dynamics of a Mathematical Model of Non-Spiking A-Type Horizontal Cells in the Rabbit Retina
Abstract: A previous study proposed a mathematical model of A-type horizontal cells in the rabbit retina. This model, which was constructed based on the Hodgkin-Huxley model, was described by a system of nonlinear ordinary differential equations. The model contained five types of voltage-dependent ionic conductances: sodium, calcium, delayed rectifier potassium, transient outward potassium, and anomalous rectifier potassium conductances. The previous study indicated that when the delayed rectifier potassium conductance had a small value, depolarizing stimulation could change the dynamic state of the model from a hyperpolarized steady state to a depolarized steady state. However, how this change was affected by variations in the ionic conductance values was not clarified in detail in the previous study. To clarify this issue, in the present study, we performed numerical simulation analysis of the model and revealed the differences among the five types of ionic conductances.
Cite this paper: Shirahata, T. (2016) The Effect of Variations in Ionic Conductance Values on the Dynamics of a Mathematical Model of Non-Spiking A-Type Horizontal Cells in the Rabbit Retina. Applied Mathematics, 7, 1297-1302. doi: 10.4236/am.2016.712114.
References

[1]   Blanco, R., Vaquero, C.F. and de la Villa, P. (1996) Action Potentials in Axonless Horizontal Cells Isolated from the Rabbit Retina. Neuroscience Letters, 203, 57-60.
http://dx.doi.org/10.1016/0304-3940(95)12263-X

[2]   Aoyama, T., Kamiyama, Y., Usui, S., Blanco, R., Vaquero, C.F. and de la Villa, P. (2000) Ionic Current Model of Rabbit Retinal Horizontal Cell. Neuroscience Research, 37, 141-151.
http://dx.doi.org/10.1016/S0168-0102(00)00111-5

[3]   Shirahata, T. (2008) Simulation of Rabbit A-Type Retinal Horizontal Cell That Generates Repetitive Action Potentials. Neuroscience Letters, 439, 116-118.
http://dx.doi.org/10.1016/j.neulet.2008.04.087

[4]   Ashrafuzzaman, M. and Tuszynski, J. (2012) Membrane Biophysics. Springer, Heidelberg, 26.

[5]   Fohlmeister, J.F., Cohen, E.D. and Newman, E.A. (2010) Mechanisms and Distribution of Ion Channels in Retinal Ganglion Cells: Using Temperature as an Independent Variable. Journal of Neurophysiology, 103, 1357-1374.
http://dx.doi.org/10.1152/jn.00123.2009

[6]   Cembrowski, M.S., Logan, S.M., Tian, M., Jia, L., Li, W., Kath, W.L., Riecke, H. and Singer, J.H. (2012) The Mechanisms of Repetitive Spike Generation in an Axonless Retinal Interneuron. Cell Reports, 1, 155-166.
http://dx.doi.org/10.1016/j.celrep.2011.12.006

[7]   Golomb, D. (2014) Mechanism and Function of Mixed-Mode Oscillations in Vibrissa Motoneurons. PLoS ONE, 9, e109205.
http://dx.doi.org/10.1371/journal.pone.0109205

[8]   Shirahata, T. (2016) The Relationship of Sodium and Potassium Conductances with Dynamic States of a Mathematical Model of Electrosensory Pyramidal Neurons. Applied Mathematics, 7, 819-823.
http://dx.doi.org/10.4236/am.2016.79072

[9]   Shirahata, T. (2016) The Effect of Variations in Ionic Conductance Values on the Suppression of Repetitive Spiking in a Mathematical Model of Type-A Medial Vestibular Nucleus Neurons. Applied Mathematics, 7, 1134-1139.
http://dx.doi.org/10.4236/am.2016.710101

 
 
Top