OALibJ  Vol.2 No.12 , December 2015
Hydrogen Storage in VNx-Hy Thin Films
Abstract: Vanadium or its alloy-based hydrides are intensively studied at the moment with regard to their use as hydrogen absorbents. Most experiments were carried out using “bulk” materials. This paper uses ion beam-assisted deposition technology (IBAD) to create thin-film nanocrystalline VNx-Hy hydrogen storages. The transmission electron microscopy and scanning electron microscopy were used to study the initial stages of the film formation. The main mechanisms of the formation of intergranular pores in nanogranular structures have been established. The interrelation of the parameters of the IBAD and those of film structure has been shown. The obtained data allowed for the explanation of the mechanisms of hydrogen absorption and desorption by thin films. It was shown that the availability of branched network of intergranular pores allows VNx-Hy structures to accumulate hydrogen within a few minutes at a pressure of 0.5 MPa. Hydrogen in amount of up to 2.55 wt% is retained in the films of 3 μm thick at room temperature and atmospheric pressure. The hydrogen desorption starts at 100℃.
Cite this paper: Bryk, V. , Guglya, A. , Kalchenko, A. , Marchenko, I. , Marchenko, Y. , Solopikhina (Melnikova), E. , Vlasov, V. and Zubarev, E. (2015) Hydrogen Storage in VNx-Hy Thin Films. Open Access Library Journal, 2, 1-11. doi: 10.4236/oalib.1102228.

[1]   Hirscher, M., Panella, B. and Schmitz B. (2010) Metal-Organic Frameworks for Hydrogen Storage. Microporous and Mesoporous Materials, 129, 335-339.

[2]   Züttel, A., Sudan, P., Mauron, Ph., Kiyobaiashi, T., Emmenegger, Ch. and Schlapbach, L. (2002) Hydrogen Storage in Carbon Nanostructures. International Journal of Hydrogen Energy, 27, 203-212.

[3]   Niemann, M., Srinivasan, S., Phani, A., Kumar, A., Goswami, D.Y. and Stefanakos, E.K. (2008) Nanomaterials for Hydrogen Storage Applications: A Review. Journal of Nanomaterials, 2008, Article ID: 950967.

[4]   Liang, G., Huot, J., Boily, S. Neste, A.V. and Schulz, R. (1999) Hydrogen Storage Properties of the Mechanically Milled MgH2–V Nanocomposite. Journal of Alloys and Compounds, 291, 295-299.

[5]   Yu, X., Wu, Z., Chen, Q., Dou, T., Chen, J., Xia, B. and Xu, B. (2007) Effect of V Addition on Activation Performances TiMn1.25Cr0.25 Hydrogen Storage Alloy. Journal of Materials Processing Technology, 182, 549-554.

[6]   Orimo, S., Kimmerle, F. and Majer., G. (2001) Hydrogen in Nanosrtuctured Vanadium-Hydrogen Systems. Physical Review B, 63, Article ID: 094307.

[7]   Yukawa, H., Takagi, M., Teshima, A. and Morinaga, M. (2002) Alloying Effects on the Stability of Vanadium Hydrides. Journal of Alloys and Compounds, 330-332, 105-109.

[8]   Planté, D., Raufast, C., Miraglia, S., Rango, P. and Fruchart, D. (2013) Improvement of Hydrogen Sorption Properties of Compounds Based on Vanadium “bcc” Alloys by Mean of Intergranular Phase Development. Journal of Alloys and Compounds, 580, S192-S196.

[9]   Seo, Ch.Y., Kim, J.H., Lee, P.S. and Lee, J.-Y. (2003) Hydrogen Storage Properties of Vanadium-Based b.c.c. Solid Solution Metal Hydrides. Journal of Alloys and Compounds, 348, 252-257.

[10]   Pick, M. and Greene, M. (1980) Uptake Rates for Hydrogen by Niobium and Tantalum: Effect of Thin Metallic Overlayers. Journal of the Less Common Metals, 73, 89-85.

[11]   Nakamura, K. (1981) Hydrogen Absorption Kinetics of Niobium with an Ionplated Nickel Overlayer. Journal of the Less-Common Metals, 80, 65-80.

[12]   Pick, M., Davenport, J., Strogin, M. and Dienes, G. (1979) Enhancement of Hydrogen Uptake Rates for Nb and Ta by Thin Surface Overlayers. Physical Review Letters, 43, 286-289.

[13]   Ares, J., Leardini, F., Díaz-Chao, P., Ferrer, I.J., Fernández, J.F. and Sánchez, C. (2014) Non-Isothermal Desorption Process of Hydrogenated Nanocrystalline Pd-Capped Mg Films Investigated by Ion Beam Techniques. International Journal of Hydrogen Energy, 39, 2587-2596.

[14]   Qu, J., Sun, B., Yang, R., Zhao, W., Wang, Y. and Li., X. (2010) Hydrogen Absorption Kinetics of Mg Thin Films under Mild Conditions. Scripta Materialia, 62, 317-320.

[15]   Johansson, M., Ostenfeld, C. and Chorkkendorff, I. (2006) Adsorption of Hydrogen on Clean and Modified Magnesium Films. Physical Review B, 74, Article ID: 193408.

[16]   Akyildiz, H., Özenbaş, M. and Öztürk, T. (2006) Hydrogen Absorption in Magnesium Based Thin Films. International Journal of Hydrogen Energy, 31, 1379-1383.

[17]   Mooij, L. and Dam, B. (2013) Nucleation and Growth Mechanisms of Nano Magnesium Hydride from the Hydrogen Sorption Kinetics. Physical Chemistry Chemical Physics, 15, 11501-11510.

[18]   Kumar, S., Reddy, G. and Raju, V. (2009) Hydrogen Storage in Pd Capped Thermally Grown Mg Films: Studies by Nuclear Resonance Reaction Analysis. Journal of Alloys and Compounds, 476, 500-506.

[19]   Olsson, S., Blomquist, P. and Hjörvarsson, B. (2001) Strain Dependant Phase Transitions of Hydrogen in Quasi-Two-Dimensional Vanadium Lattices. Journal of Physics: Condensed Matter, 13, 1685-1698.

[20]   Andersson, G., Aits, K. and Hjörvarsson, B. (2002) Hydrogen Uptake of Thin Epitaxial Vanadium (001) Films. Journal of Alloys and Compounds, 334, 14-19.

[21]   Goncharov, А., Guglya, A. and Melnikova, E. (2012) On the Feasibility of Developing Hydrogen Storages Capable of Adsorption Hydrogen both in Its Molecular and Atomic States. International Journal of Hydrogen Energy, 37, 18061-18073.

[22]   Tal-Gutelmacher, E., Gemma, R., Pundt, A. and Kirchheim, R. (2010) Hydrogen Behavior in Nanocrystalline Titanium Thin Films. Acta Materialia, 58, 3042-3049.

[23]   Xiao, Z., Hauge, R. and Margrave, J. (1991) Reactions of Vanadium and Titanium with Molecular Hydrogen in Kr and Ar Matrices at 12K. The Journal of Physical Chemistry, 95, 2696-2700.

[24]   Moehlecke, S., Majkrzak, C. and Strongin, M. (1985) Enhanced Hydrogen Solubility in Niobium Films. Physical Review B, 31, 6804-6806.

[25]   Steiger, J., Blässer, S. and Weidinger, A. (1994) Solubility of Hydrogen in Thin Niobium Films. Physical Review B, 49, 5570-5574.

[26]   Bouhtiyya, S. and Roué, L. (2008) On the Characteristic of Pd Thin Films Prepared by Pulsed Laser Deposition under Different Pressures. International Journal of Hydrogen Energy, 33, 2912-2920.

[27]   Lee, E., Lee, J.M., Koo, J.H., Lee, W. and Lee, T. (2010) Hysteresis Behavior of Electrical Resistance in Pd Thin Films during the Process of Absorption and Desorption of Hydrogen Gas. International Journal of Hydrogen Energy, 35, 6984-6991.

[28]   Özgit, G., Akyildiz, H. and Öztürk, T. (2010) Isochronal Hydrogenation of Textured Mg/Pd Thin Films. Thin Solid Films, 518, 4762-4767.

[29]   Bouhtiyya, S. and Roué, L. (2009) Pd/Mg/Pd Thin Films Prepared by Pulsed Laser Deposition under Different Helium Pressures: Structure and Electrochemical Hydriding Properties. International Journal of Hydrogen Energy, 34, 5778-5784.

[30]   Wirth, E., Munnik, F., Pranevičius, L. and Milcius, D. (2009) Dynamic Surface Barrier Effects on Hydrogen Storage Capacity in Mg-Ni Films. Journal of Alloys and Compounds, 475, 917-922.

[31]   Qu, J., Wang, Y., Xie. L., Zheng, J., Liu, Y. and Li, X. (2009) Hydrogen Absorption-Desorption, Optical Transmission Properties and Annealing Effect of Mg Thin Films Prepared by Magnetron Sputtering. International Journal of Hydrogen Energy, 34, 1910-1915.

[32]   Norek, M., Stępniowski, W., Polański, M., Zasada, D., Bojar, Z. and Bystrzycki, J. (2011) A Comparative Study on the Hydrogen Absorption of Thin Films at Room Temperature Deposited on Non-Porous Glass Substrate and Nano-Porous Anodic Aluminum Oxide (AAO) Template. International Journal of Hydrogen Energy, 36, 11777-11784.

[33]   Reisfeld, R., Jisrawi, N., Ruckman, M. and Strongin, M. (1996) Hydrogen Absorption by Thin Pd/Nb Films Deposited on Glass. Physical Review B, 53, 4974-4979.

[34]   Chung, C., Lee, S., Groves, J., Brower, E.N., Sinclair, R. and Clemens, B.M. (2012) Interfacial Alloy Hydride Estabilization in Mg/Pd Thin Films. Physical Review Letters, 108, Article ID: 106102.

[35]   Guglya, A. (2005) Elektrofizicheskie i strukturno-fazovie kharakterisriki kompositov Cr-N i V-N. Vestnik Kharkov-skogo Natsionalnogo Universiteta. Seriya: Yadra, tcastynki, polya, 664, 73-78. (In Russian)

[36]   Vasilenko, R., Goncharov, A., Guglya, A., et al. (2008) O mekhanizme formirovaniya V-N pokrytiy v usloviyah bombardirovki gazovimy ionami. Poverhnost Rentgenovskie, Sinhrotronnie i Neytronnie Issledovaniya, 11, 81-87. (In Russian)

[37]   Bendikov, V., Guglya, A., Marchenko, I., Malykhin, D. and Neklyudov, I. (2003) Mechanisms of Forming the Cr-N Composite in the Unsteady-State Stage of Ion Beam-Assisted Deposition Process. Vacuum, 70, 331-337.

[38]   Takano, I., Isobe, S., Sasaki, T. and Baba, Y. (1989) High Nitrogen Ion-Implantation into Zirconium. Applied Surface Science, 37, 25-32.

[39]   Mansur, L. and Coghlan, W. (1983) Mechanisms of Helium Interaction with Radiation Effects in Metals and Alloys: A Review. Journal of Nuclear Materials, 119, 1-25.

[40]   Gladkih, N., Dukarov, S., Kryshtal, A., et al. (2004) Poverhnostnye yavleniya i fazovye prevrascheniya v kondensiro-vanyh plenkah. Kharkov. KNU im. V.N.Karasin.

[41]   Frenkel, I. (1924) Theorie der Adsorption und verwandter Erscheinungen. Zeitschrift für Physik, 26, 117-138.

[42]   Belyakov, L., Makarova, T., Sakharov, V., Serenkov, I. and Sreseli, О. (1998) Sostav i poristost mnogokomponentnuh structur: Poristiy kremniy kak trehkomponentnaya. Fizika i Tekhnika Poluprovodnikov, 32, 1122-1124. [Semi-conductors, 32, 1003-1005].

[43]   Gringoz, A., Glandut, N. and Valette, S. (2009) Electrochemical Hydrogen Storage in TiC0.6, Not in TiC0.9. Electro-chemistry Communications, 11, 2044-2047.

[44]   Ding, H., Fan, X., Li, C., Liu, X., Jiang, D. and Wang, C. (2013) First-Principles Study of Hydrogen Storage in Non-Stoichiometric TiCx. Journal of Alloys and Compounds, 551, 67-71.

[45]   Carbia, I., Lopez, M. and Alonso, J. (2007) The Optimum Average Nanopore Size Hygrogen Storage in Carbon Nanoporous Materials. Carbon, 45, 2649-2658.