Back
 GEP  Vol.4 No.7 , July 2016
Microspherules-Bearing White Sandstone: Implication of Cosmic Impact Event near Jurassic-Cretaceous Boundary in West Central Sinai, Egypt
Abstract: The presence of glass microspherules enclosing relict grains, shattered quartz and silicon carbide in white sandstone beds near the Jurassic-Cretaceous boundary in west central Sinai indicates a cosmic impact event. Characterization of the impact microspherules and proposing a reasonable scenario for their origin are the aims of this work. Field observations, optical, binocular, scanning electron and high-resolution transmitted electron microscopy investigations and chemical analyses were carried out. The study revealed that glass microspherules have high Al2O3 and FeO contents and low CaO and MgO contents. The high content of Al2O3 indicates that the source of microtektite-like microspherules is attributed to the melting of a clay-rich sandstone and carbonaceous matter, while the high content of FeO indicates admixing with projectile matter. The reaction between silica and carbon was carried out under conditions of high temperature (T > 1000&#176C) and carbon (C/Si > 1) which resulted in the production of silicon carbide with microdiamond intergrowth. Consequently, this intergrowth is in accordance with the impact origin via rapid condensation and growth within a vapor phase. In spite of the fact that no source crater has been recognized to date in the study area, the authors propose at least a single cosmic impact event scenario for the recorded glass microspherules in west central Sinai. The impact excavated the Paleozoic siliciclastic sedimentary rocks and then the glass microspherules showered the area of study. The deposition of microtektite-like glass particles within the white sandstone beds of the Malha Formation took place in the fluvial plain terrestrial environment. This setting precluded severe post-depositional reworking, yielding preservation of the glass particles in a primary layer. Eventually, lateral migration of the braided channels led to the reworking of the microspherules layer and the spatial dispersal of the shattered quartz.
Cite this paper: Badawy, H. , Zayed, A. and Shahien, M. (2016) Microspherules-Bearing White Sandstone: Implication of Cosmic Impact Event near Jurassic-Cretaceous Boundary in West Central Sinai, Egypt. Journal of Geoscience and Environment Protection, 4, 53-65. doi: 10.4236/gep.2016.47007.
References

[1]   Kyte, F.T. (2002) Tracers of the Extraterrestrial Component in Sediments and Inferences for Earth’s Accretion History. In: Koeberl, C. and MacLeod, K.G., Eds., Catastrophic Events and Mass Extinctions: Impacts and Beyond, Boulder, Colorado, Geological Society of America, Special Paper No. 356, 21-38.
http://dx.doi.org/10.1130/0-8137-2356-6.21

[2]   Guaita, C. and Martegani, F. (2008) Cosmic Microsphere: A Sem Study. Memorie Societa Astronemica Itallana Supplementi, 12, 110-125.

[3]   Badyukov, D.D. and Raitala, J. (2012) Ablation Spherules in the Sikhote Alin Meteorite and Their Genesis. Petrology, 20, 520-528.
http://dx.doi.org/10.1134/S086959111206001X

[4]   Kohout, T., Kallonen, A., Suuronen, J.-P., Rochette, P., Hutzler, A., Gattacceca, J., Badjukov, D.D., Skála, R., Bohmová, V. and Cuda, J. (2014) Density, Porosity, Mineralogy and Internal Structure of Cosmic Dust and Alteration of Its Properties during High Velocity Atmospheric Entry. MAPS, 49, 1157-1170.
http://dx.doi.org/10.1111/maps.12325

[5]   Kleesment, A., Konsa, M., Puura, V., Karhu, J., Preeden, U. and Kallaste, T. (2006) Impact-Induced and Diagenetic Changes in Minerals in the Sandy Ejecta of Kardla Crater, NW Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 55, 189-212.

[6]   Puura, V., Huber, H., Kirs, J., Karki, A., Suuroja, K., Kirsimae, K., Kivisilla, J., Kleesment, A., Konsa, M., Preeden, U., Suuroja, S. and Koeberl, C. (2004) Geology, Petrography and Geochemistry of Impactites and Target Rocks from Kardla Crater, Estonia. Meteoritics and Planetary Science, 39, 425-451.
http://dx.doi.org/10.1111/j.1945-5100.2004.tb00103.x

[7]   Gucsik, A. (2009) Shock Metamorphism of Terrestrial Impact Structures and Its Application in the Earth and Planetary Sciences. Cathodoluminescence and Its Application in the Planetary Sciences. Springer-Verlag, Berlin Heidelberg, 23.
http://dx.doi.org/10.1007/978-3-540-87529-1_2

[8]   Ferrière, L., Morrow, J.R., Amgaa, T. and Koeberl, C. (2009) Systematic Study of Universal-Stage Measurements of Planar Deformation Features in Shocked Quartz: Implications for Statistical Significance and Representation of Results. Meteoritics and Planetary Science, 44, 925-940.
http://dx.doi.org/10.1111/j.1945-5100.2009.tb00778.x

[9]   French, B.M. and Koeberl, C. (2010) The Convincing Identification of Terrestrial Meteorite Impact Structures: What Works, What Doesn’t and Why. Earth Science Reviews, 98, 123-170.
http://dx.doi.org/10.1016/j.earscirev.2009.10.009

[10]   Bunch, T.E., Hermes, R.E., Moore, A.M.T., Kennett, D.J., Weaver, J.C., Wittke, J.H., DeCarli, P.S., Bischoff, J.L., Hillman, G.C., Howard, G.A., Kimbel, D.R., Kletetschka, G., Lipo, C.P., Sakai, S., Revay, Z., West, A., Firestone, R.B. and Kennett, J.P. (2012) Very High-Temperature Impact Melt Products as Evidence for Cosmic Airbursts and Impact 12,900 Years Ago. PNAS PLUS, E1903-E1912.
http://dx.doi.org/10.1073/pnas.1204453109

[11]   Osinski, G.R., Haldemann, A.F.C., Schwarcz, H.P., Smith, J.R., Kleindienst, M.R., Kieniewicz, J. and Churcher, C.S. (2007) Impact Glass at the Dakhleh Oasis, Egypt: Evidences for a Cratering Event or Large Aerial Burst? Lunar and Planetary Science XXXVIII.

[12]   Glass, B.P., Muenow, D.W. and Aggrey, K.E. (1986) Further Evidence for the Impact Origin of Tektites. Meteoritics, 21, 369-370.

[13]   Kieffer, S.W. and Simonds, C.S. (1980) The Role of Volatiles and Lithology in the Impact Cratering Process. Reviews of Geophysics and Space Physics, 18, 143-181.
http://dx.doi.org/10.1029/RG018i001p00143

[14]   Artemieva, N., Pierazzo, E. and Stöffer, D. (2002) Numerical Modeling of Tektite Origin in Oblique Impacts: Implication to Ries Moldavites Strewn Field. Bulletin of the Czech Geological Survey, 77, 303-311.

[15]   Glass, B.P. (1990) Tektites and Microtektites: Key Facts and Inferences. Tectonophysics, 171, 393-404.
http://dx.doi.org/10.1016/0040-1951(90)90112-L

[16]   Koeberl, C. (1994) Tektite Origin by Hypervelocity Asteroidal or Cometary Impact: Target Rocks, Source Craters, and Mechanisms. Geological Society of America Special Paper, 293, 133-152.
http://dx.doi.org/10.1130/SPE293-p133

[17]   McHugh, C.M.G., Snyder, S.W., Deconinck, J.F., Saito, Y., Aubry, M.P. and Katz, M.E. (1996) Upper Eocene Tektites of the New Jersey Continental Margin: ODP, Site 904. Proceedings of the Ocean Drilling Program, Scientific Results Vol. 150, College Station, 241-269.
http://dx.doi.org/10.2973/odp.proc.sr.150.019.1996

[18]   Fröhlich, F., Poupeau, G., Badou, A., Bourdonnec, L.E., Sacquin, F.X., Dubernet, Y., Bardinzeff, S., Véran, J.M., Smith, M.D.C. and Diemer, E. (2013) Libyan Desert Glass: New Field and Fourier Transform Infrared Data. Meteoritics and Planetary Science, 48, 2517-2530.
http://dx.doi.org/10.1111/maps.12223

[19]   Folco, L., DiMartino, M., El Barkooky, A., D’Orazio, M., Lethy, A., Urbibi, S., Nicolosi, I., Hafez, M., Cordier, C., Van Ginneken, M., Zeoli, A., Radwan, A.M., El Khrepy, S., El Gabry, M., Gomaa, M., Barakat, A.A., Serra, R. and El Sharkawi, M. (2010) The Kamil Crater in Egypt. Science, 329, 804.
http://dx.doi.org/10.1126/science.1190990

[20]   Johnson, D. and Tyldesley, J. (2013) Iron from the Sky: Meteorites in Ancient Egypt. Meteorite, 4, 8-13.

[21]   Bignami, L., Guaita, C., Pezzotta, F. and Zilioli, M. (2014) Micro-Spherules near the Kamil Crater. Memorie della Societa Astronomica Italiana Supplementi, 26, 25-37.

[22]   Claeys, P. and Casier, J.G. (1994) Microtektite-Like Impact Glass Associated with the Fransnian-Famennian Boundary Mass Extension. Earth Planetary Science Letters, 122, 303-315.
http://dx.doi.org/10.1016/0012-821X(94)90004-3

[23]   Wopfner, H. (2010) Burial History of Jurassic Gondwana Surface West and Southwest of Lake Eyre, Central Australia. Coruña, 35, 221-242.

[24]   Alsharhan, A.S. and Salah, M.G. (1997) Lithostratigraphy and Hydrocarbon Habitat of the Pre-Cenomanian Nubian Sandstone in the Gulf of Suez Oil Province, Egypt. GeoArabia, Bahrian, 2, 385-400.

[25]   El-Azaby, M.H. and El-Araby, A. (2005) Depositional Facies, Environments and Sequence Stratigraphic Interpretation of the Middle Triassic-Lower Cretaceous (Pre-Late Albian) Succession in Arif El-Naga Anticline, Northeast Sinai, Egypt. Journal of African Earth Science, 41, 119-143.
http://dx.doi.org/10.1016/j.jafrearsci.2005.02.005

[26]   Reimold, W.U., Ferrière, L., Deutsch, A. and Koeber, C. (2014) Impact Controversies: Impact Recognition Criteria and Related Issues. Meteoritics and Planetary Science, 49, 2037-2087.
http://dx.doi.org/10.1111/maps.12284

[27]   Sweeney, D. and Simonson, B.M. (2008) Textural Constraints on the Formation of Impact Spherules: A Case Study from the Dales Gorge BIF, Paleoproterozoic Hamersley Group of Western Australia. Meteoritics and Planetary Science, 43, 2073-2087.
http://dx.doi.org/10.1111/j.1945-5100.2008.tb00662.x

[28]   Kassab, M.A., Hassanani, I.M. and Salem, A.M. (2014) Petrography, Diagenesis and Reservoir Characteristics of the Pre-Cenomanian Sandstone, Sheikh Attia Area, East Central Sinai, Egypt. Journal of African Earth Science, 96, 122-138.
http://dx.doi.org/10.1016/j.jafrearsci.2014.03.021

[29]   Glass, B.P. (1982) Possible Correlation between Tektite Events and Climatic Changes. Geological Society of America Special Paper, 190, 251-258.
http://dx.doi.org/10.1130/SPE190-p251

[30]   Glass, B.P. and Zwart, M.J. (1979) North American Microtektites in Deep Sea Drilling Project Cores from the Caribbean Sea and Gulf of Mexico. Geological Society of American Bulletin, 90, 595-602.
http://dx.doi.org/10.1130/0016-7606(1979)90<595:NAMTID>2.0.CO;2

[31]   Folco, L., Perchiazzi, N., D’Orazio, M., Frezzotti, M.L., Glass, B.P. and Rochette, P. (2010) Shocked Quartz and other Mineral Inclusions in Australasian Microtektites. Geology, 38, 211-214.
http://dx.doi.org/10.1130/G30512.1

[32]   Misra, S., Mazunder, A., Andreoli, M.A. and Ray, D. (2014) Large Meteorite Impacts, Volcanism and Possible Environmental Disruption at the Jurassic-Cretaceous Boundary. 45th Lunar and Planetary Science Conference, Woodland.

[33]   Genge, M.J., Engrand, C., Gounelle, M. and Taylor, S. (2008) The Classification of Micrometeorites. Meteoritics and Planetary Science, 43, 497-515.
http://dx.doi.org/10.1111/j.1945-5100.2008.tb00668.x

[34]   Alvarez, W., Claeys, P. and Kieffer, S.W. (1995) Emplacement of Cretaceous-Tertiary Boundary Shocked Quartz from Chicxulub Crater. Science (New Series), 269, 930-935.
http://dx.doi.org/10.1126/science.269.5226.930

[35]   Temraz, M.G. (2012) Mineralogical and Physical Characteristics of White Sandstone of Abu Rodeiyim Quarry (Sinai), and its Possible Industrial Utilization. Acta Geological Sinica, 86, 440-446.
http://dx.doi.org/10.1111/j.1755-6724.2012.00672.x

[36]   Kora, M. and Schultz, G. (1987) Lower Carboniferous Palynomorphs from Um Bogma, Sinai (Egypt). Grana, 26, 53-66.
http://dx.doi.org/10.1080/00173138709428904

[37]   Schulte, P., Deutsch, A., Salge, T., Berndt, J., Kontny, A., Macleod, K.G., Neuser, R.D. and Krumm, S. (2009) A Dual-Layer Chicxulub Ejecta Sequence with Shocked Carbonates from the Cretaceous-Paleogene (K-Pg) Boundary, Demerara Rise, Western Atlantic. Geochimica et Cosmochimica Acta, 73, 1180-1204.
http://dx.doi.org/10.1016/j.gca.2008.11.011

[38]   Kleinmann, B., Horn, P. and Langenhorst, F. (2001) Evidence for Shock Metamorphism in Sandstones from the Libyan Desert Glass Strew Field. Meteoritics and Planetary Science, 36, 1277-1282.
http://dx.doi.org/10.1111/j.1945-5100.2001.tb01960.x

[39]   Langenhorst, F. and Deutsch, A. (2012) Shock Metamorphism of Minerals. Elements, 8, 31-36.
http://dx.doi.org/10.2113/gselements.8.1.31

[40]   Whitehead, J., Spray, J. G. and Grieve, R. (2002) Origin of Toasted Quartz in Terrestrial Impact Structures. Geology 30, 431-434.
http://dx.doi.org/10.1130/0091-7613(2002)030<0431:OOTQIT>2.0.CO;2

[41]   Ding, Y. and Veblen, D. R. (2004) Impactite from Henbry, Australia. American Mineralogist, 89, 961-968.
http://dx.doi.org/10.2138/am-2004-0705

[42]   Osinski, G. R., Grieve, R. A. F. and Spray, J. G. (2008) Impact Melting in Sedimentary Target Rock: An Assessment. Geological Society of America Special Paper, 437, 1-18.
http://dx.doi.org/10.1130/2008.2437(01)

[43]   Abbott, J. I. (2000) Carbon Chemistry of Giant Impacts. PhD Thesis, the Open University, Milton Keynes.

 
 
Top