Back
 OALibJ  Vol.2 No.11 , November 2015
Hardon-Quark Hybrid Stars Constructed by the Nonlinear σ-ω-ρ Mean-Field Model and MIT-Bag Model
Abstract: Density-dependent relations among saturation properties of symmetric nuclear matter and hyperonic matter, properties of hadron-(strange) quark hybrid stars are discussed by applying the conserving nonlinear s-w-r hadronic mean-field theory. Nonlinear interactions that will be renormalized as effective coupling constants, effective masses and sources of meson equations of motion are constructed self-consistently by maintaining thermodynamic consistency to the mean-field approximation. The coupling constants expected from the hadronic mean-field model and SU (6) quark model for the vector coupling constants are compared; the coupling constants exhibit different density-dependent results for effective masses and binding energies of hyperons, properties of hadron and hadron-quark stars. The nonlinear s-w-r hadronic mean-field approximation with or without vacuum fluctuation corrections and strange quark matter defined by MIT-bag model are employed to examine properties of hadron-(strange) quark hybrid stars. The hadron-(strange) quark hybrid stars become more stable at high densities compared to pure hadronic and pure strange quark stars.
Cite this paper: Uechi, S. and Uechi, H. (2015) Hardon-Quark Hybrid Stars Constructed by the Nonlinear σ-ω-ρ Mean-Field Model and MIT-Bag Model. Open Access Library Journal, 2, 1-16. doi: 10.4236/oalib.1102012.
References

[1]   Day, B.D. (1978) Current State of Nuclear Matter Calculations. Reviews of Modern Physics, 50, 495-521.
http://dx.doi.org/10.1103/RevModPhys.50.495

[2]   Hugenholtz, N.M. and Van Hove, L. (1958) A Theorem on the Single Particle Energy in a Fermi Gas with Interaction. Physica, 24, 363-376.
http://dx.doi.org/10.1016/S0031-8914(58)95281-9

[3]   Brueckner, K.A. and Levinson, C.A. (1955) Approximate Reduction of the Many-Body Problem for Strongly Interacting Particles to a Problem of Self-Consistent Fields. Physical Review, 97, 1344-1352.
http://dx.doi.org/10.1103/PhysRev.97.1344
Brueckner, K.A. (1958) Single-Particle Energy and Effective Mass and the Binding Energy of Many-Body Systems, Single Particle Energies in the Theory of Nuclear Matter. Physical Review, 110, 597-600.
http://dx.doi.org/10.1103/PhysRev.110.597
Brueckner, K.A. and Goldman, D.T. (1960) Single Particle Energies in the Theory of Nuclear Matter. Physical Review, 117, 207-213.
http://dx.doi.org/10.1103/PhysRev.117.207
Brueckner, K.A., Gammel, J.L. and Kubis, J.T. (1960) Calculation of Single-Particle Energies in the Theory of Nuclear Matter. Physical Review, 118, 1438-1441.
http://dx.doi.org/10.1103/PhysRev.118.1438


[4]   Landau, L.D. (1956) Theory of Fermi-Liquids. Soviet Physics JETP-USSR, 3, 920-925.
Landau, L.D. (1957) Oscillations in a Fermi-Liquid. Soviet Physics JETP-USSR, 5, 101-108.

[5]   Pines, D. and Nozières, P. (1966) The Theory of Quantum Liquids. Addison-Wesley, Boston.

[6]   Nozières, P. (1964) Theory of Interacting Fermi Systems. Perseus Publishing, New York.

[7]   Baym, G. and Kadanoff, L.P. (1961) Conservation Laws and Correlation Functions. Physical Review, 124, 287-299.
http://dx.doi.org/10.1103/PhysRev.124.287
Baym, G. (1962) Self-Consistent Approximations in Many-Body Systems. Physical Review, 127, 1391-1401.
http://dx.doi.org/10.1103/PhysRev.127.1391


[8]   Takada, Y. (1995) Exact Self-Energy of the Many-Body Problem from Conserving Approximations. Physical Review, B52, 12708-12719.
http://dx.doi.org/10.1103/PhysRevB.52.12708

[9]   Bonitz, M., Nareyka, R. and Semkat, D., Eds. (2000) Progress in Nonequilibrium Green’s Functions, Progress in Nonequilibrium Green’s Functions II. World Scientific, Singapore.

[10]   Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133.
http://dx.doi.org/10.1103/physrev.140.a1133

[11]   Kohn, W. (1999) Nobel Lecture: Electronic Structure of Matter-Wave Functions and Density Functional. Reviews of Modern Physics, 71, 1253-1266.
http://dx.doi.org/10.1103/RevModPhys.71.1253

[12]   Uechi, H. (2004) The Theory of Conserving Approximations and the Density Functional Theory in Approximations for Nuclear Matter. Progress of Theoretical Physics, 111, 525-543.
http://dx.doi.org/10.1143/PTP.111.525

[13]   Serot, B.D. and Walecka, J.D. (1986) Advances in Nuclear Physics. Vol. 16, Negele, J.W. and Vogt, E., Eds., Plenum, New York.

[14]   Serot, B.D. (1992) Quantum Hadrodynamics. Reports on Progress in Physics, 55, 1855-1946.
http://dx.doi.org/10.1088/0034-4885/55/11/001

[15]   Uechi, H. (1989) Fermi-Liquid Properties of Nuclear Matter in a Dirac-Hartree-Fock Approximation. Nuclear Physics A, 501, 813-834.
http://dx.doi.org/10.1016/0375-9474(89)90162-0
Uechi, H. (1992) Landau Fermi-Liquid Theory and Approximations in the Quantum Hadrodynamical Model. Nuclear Physics A, 541, 397-412.
http://dx.doi.org/10.1016/0375-9474(92)90183-K


[16]   Furnstahl, R.J. and Serot, B.D. (1991) Covariant Feynman Rules at Finite Temperature: Time-Path Formulation. Physical Review C, 44, 2141-2174.
http://dx.doi.org/10.1103/PhysRevC.44.2141
Furnstahl, R.J. and Serot, B.D. (1990) Covariant Mean-Field Calculations of Finite-Temperature Nuclear Matter. Physical Review C, 41, 262-279.
http://dx.doi.org/10.1103/PhysRevC.41.262


[17]   Uechi, H. (2006) Properties of Nuclear and Neutron Matter in a Nonlinear σ-ω-ρ Mean-Field Approximation with Self- and Mixed-Interactions. Nuclear Physics A, 780, 247-273.
http://dx.doi.org/10.1016/j.nuclphysa.2006.10.015
Uechi, H. (2008) Density-Dependent Correlations between Properties of Nuclear Matter and Neutron Stars in a Nonlinear σ-ω-ρ Mean-Field Approximation. Nuclear Physics A, 799, 181-209.
http://dx.doi.org/10.1016/j.nuclphysa.2007.11.003


[18]   Uechi, S.T. and Uechi, H. (2009) The Density-Dependent Correlations among Observables in Nuclear Matter and Hyperon-Rich Neutron Stars. Advances in High Energy Physics, 2009, Article ID: 640919.
http://dx.doi.org/10.1155/2009/640919

[19]   Uechi, H. and Uechi, S.T. (2009) Saturation Properties and Density-Dependent Interactions among Nuclear and Hyperon Matter. The Open Nuclear & Particle Physics Journal, 2, 47-60.
http://dx.doi.org/10.2174/1874415X00902010047

[20]   Botvina, A.S. and Pochodzalla, J. (2007) Production of Hypernuclei in Multifragmentation of Nuclear Spectator Matter. Physical Review C, 76, Article ID: 024909.
http://dx.doi.org/10.1103/PhysRevC.76.024909

[21]   Misner, C.W., Thorne, K.S. and Wheeler, J.W. (1973) Gravitation. W. H. Freeman and Company, New York.

[22]   Arnett, D. (1996) Supernovae and Nucleosynthesis. Princeton University Press, Princeton.

[23]   Glendenning, N.K. (2000) Compact Stars. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-1-4612-1212-6

[24]   Uechi, H., Uechi, S.T. and Serot, B.D., Eds. (2012) Neutron Stars: The Aspect of High Density Matter, Equations of State and Related Observables. Nova Science Publisher, New York.

[25]   Akmal, A., Pandharipande, V.R. and Ravenhall, D.G. (1998) Equation of State of Nucleon Matter and Neutron Star Structure. Physical Review C, 58, 1804-1828.
http://dx.doi.org/10.1103/PhysRevC.58.1804

[26]   Lattimer, J.M. and Prakash, M. (2007) Neutron Star Observations: Prognosis for Equation of State Constraints. Physics Reports, 442, 109-165.
http://dx.doi.org/10.1016/j.physrep.2007.02.003

[27]   Vidaña, I., Polls, A., Ramos, A., Engvik, L. and Hjorth-Jensen, M. (2000) Hyperon-Hyperon Interactions and Properties of Neutron Star Matter. Physical Review C, 62, Article ID: 035801.
http://dx.doi.org/10.1103/PhysRevC.62.035801

[28]   Baldo, M., Burgio, G.F. and Schulze, H.J. (2000) Hyperon Stars in the Brueckner-Bethe-Goldstone Theory. Physical Review C, 61, Article ID: 055801.
http://dx.doi.org/10.1103/PhysRevC.61.055801

[29]   Maruyama, T., Chiba, S., Schulze, H.J. and Tatsumi, T. (2007) Hadron-Quark Mixed Phase in Hyperon Stars. Physical Review D, 76, Article ID: 123015.
http://dx.doi.org/10.1103/PhysRevD.76.123015

[30]   Uechi, H. (2008) Correlations between Saturation Properties of Isospin Symmetric and Asymmetric Nuclear Matter in a Nonlinear σ-ω-ρ Mean-Field Approximation. Advanced Studies in Theoretical Physics, 2, 519-548.

[31]   Gal, A. (2003) To Bind or Not to Bind: ΛΛ Hypernuclei and Ξ Hyperons. Nuclear Physics A, 721, C945-C950.
http://dx.doi.org/10.1016/S0375-9474(03)01248-X

[32]   Glendenning, N.K., Von-Eiff, D., Haft, M., Lenske, H. and Weigel, M.K. (1993) Relativistic Mean-Field Calculations of Λ and Σ Hypernuclei. Physical Review C, 48, 889-895.
http://dx.doi.org/10.1103/PhysRevC.48.889

[33]   Bellac, M.L., Mortessagne, F. and Bartrouni, G.G. (2004) Equilibrium and Non-Equilibrium Statistical Thermodynamics. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511606571

[34]   Gelmini, G. and Ritzi, B. (1995) Chiral Effective Lagrangian Description of Bulk Nuclear Matter. Physics Letters B, 357, 431-434.
http://dx.doi.org/10.1016/0370-2693(95)00924-A

[35]   Huguet, R., Caillon, J.C. and Labarsouque, J. (2007) Saturation Properties of Nuclear Matter in a Relativistic Mean Field Model Constrained by the Quark Dynamics. Nuclear Physics A, 781, 448-458.
http://dx.doi.org/10.1016/j.nuclphysa.2006.11.046

[36]   Schaffner, J. and Mishustin, I.N. (1996) Hyperon-Rich Matter in Neutron Stars. Physical Review C, 53, 1416-1429.
http://dx.doi.org/10.1103/PhysRevC.53.1416

[37]   Shao, G.-Y. and Liu, Y.-X. (2009) Influence of the σ-ω Meson Interaction on Neutron Star Matter. Physical Review C, 79, Article ID: 025804.
http://dx.doi.org/10.1103/PhysRevC.79.025804

[38]   Furnstahl, R.J., Serot, B.D. and Tang, H.-B. (1997) A Chiral Effective Lagrangian for Nuclei. Nuclear Physics A, 615, 441-482.
http://dx.doi.org/10.1016/S0375-9474(96)00472-1

[39]   McIntire, J., Hu, Y. and Serot, B.D. (2007) Loop Corrections and Naturalness in a Chiral Effective Field Theory. Nuclear Physics A, 794, 166-186.
http://dx.doi.org/10.1016/j.nuclphysa.2007.08.008

[40]   Walecka, J.D. (1995) Theoretical Nuclear and Subnuclear Physics. Oxford University Press, Oxford.

[41]   Jha, T.K. and Mishra, H. (2008) Constraints on Nuclear Matter Parameters of an Effective Chiral Model. Physical Review C, 78, Article ID: 065802.
http://dx.doi.org/10.1103/PhysRevC.78.065802

[42]   Brown, G.E. and Rho, M. (1991) Scaling Effective Lagrangians in a Dense Medium. Physical Review Letters, 66, 2720-2723.
http://dx.doi.org/10.1103/PhysRevLett.66.2720

[43]   Chiapparini, M., Bracco, M.E., Delfino, A., Malheiro, M., Menezes, D.P. and Providência, C. (2009) Hadron Production in Non-Linear Relativistic Mean Field Models. Nuclear Physics A, 826, 178-189.
http://dx.doi.org/10.1016/j.nuclphysa.2009.05.002

[44]   Uechi, H. and Uechi, S.T. (2008) Meeting Abstract. The Annual Meeting of Japan Physical Society, 63, Part 1, 49.

[45]   Serot, B.D. and Uechi, H. (1987) Neutron Stars in Relativistic Hadron-Quark Models. Annals of Physics, 179, 272-293.
http://dx.doi.org/10.1016/0003-4916(87)90137-0

[46]   Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B. and Weisskopf, V.F. (1974) New Extended Model of Hadrons. Physical Review D, 9, 3471-3495.
http://dx.doi.org/10.1103/PhysRevD.9.3471

[47]   Farhi, E. and Jaffe, R.L. (1984) Strange Matter. Physical Review D, 30, 2379-2390.
http://dx.doi.org/10.1103/PhysRevD.30.2379

[48]   Shapiro, S.L. and Teukolsky, S.A. (1983) Black Holes, White Dwarfs, and Neutron Stars. John Wiley & Sons Inc., Hoboken.
http://dx.doi.org/10.1002/9783527617661

[49]   Witten, E. (1984) Cosmic Separation of Phases. Physical Review D, 30, 272-285.
http://dx.doi.org/10.1103/PhysRevD.30.272

[50]   Dexheimer, V.A. and Schramm, S. (2009) Neutron Stars as a Probe for Dense Matter. Nuclear Physics A, 827, 579c-581c.
http://dx.doi.org/10.1016/j.nuclphysa.2009.05.127

[51]   Bombaci, I., Logoteta, D., Panda, P.K., Providência, C. and Vidaña, I. (2009) Quark Matter Nucleation in Hot Hadronic Matter. Physics Letters B, 680, 448-452.
http://dx.doi.org/10.1016/j.physletb.2009.09.039

 
 
Top