[1] Franks, A.E. and Nevin, K.P. (2010) Microbial Fuel Cells: A Current Review. Energies, 3, 899-919.
[2] Malvankar, N.S., Mester, T., Tuominen, M. and Lovley, D.R. (2012) Supercapacitors Based on c-Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria. A European Journal of Chemical Physics and Physical Chemistry, 13, 463-468.
http://dx.doi.org/10.1002/cphc.201100865
[3] Malvankar, N.S., Vargas, M., Nevin, K.P., Franks, A.E. and Leang, C. (2011) Tunable Metallic-Like Conductivity in Nanostructured Biofilms Comprised of Microbial Nanowires. Nature Nanotechnology, 6, 573-579.
http://dx.doi.org/10.1038/nnano.2011.119
[4] Lovley, D.R. (2006) Bug Juice: Harvesting Electricity with Microorganisms. Nature Reviews Microbiology, 4, 497-508.
http://dx.doi.org/10.1038/nrmicro1442
[5] Lovley, D.R. and Nevin, K.P. (2011) A Shift in the Current: New Applications and Concepts for Microbe-Electrode Electron Exchange. Current Opinion in Biotechnology, 22, 441.
http://dx.doi.org/10.1016/j.copbio.2011.01.009
[6] Zhang, T., Gannon, S.M., Nevin, K.P., Franks, A.E. and Lovley, D.R. (2010) Stimulating the Anaerobic Degradation of Aromatic Hydrocarbons in Contaminated Sediments by Providing an Electrode as the Electron Acceptor. Environmental Microbiology, 12, 1011-1020.
http://dx.doi.org/10.1111/j.1462-2920.2009.02145.x
[7] Bradley, R.W., Bombelli, P., Rowden, S. and Howe, C.J. (2012) Biological Photovoltaics: Intra- and Extra-Cellular Electron Transport by Cyanobacteria. Biochemical Society Transactions, 40, 1302-1307.
http://dx.doi.org/10.1042/BST20120118
[8] Gregory, K.B., Bond, D.R. and Lovley, D.R. (2004) Graphite Electrodes as Electron Donors for Anaerobic Respiration. Environmental Microbiology, 6, 596.
http://dx.doi.org/10.1111/j.1462-2920.2004.00593.x
[9] Steinbusch, K.J.J., Hamelers, H.V.M., Schaap, J.D., Kampman, C. and Buisman, C.J.N. (2010) A Kinetic Perspective on Extracellular Electron Transfer by Anode-Respiring Bacteria. FEMS Microbiology Reviews, 34, 3-17.
http://dx.doi.org/10.1111/j.1574-6976.2009.00191.x
[10] McInerney, M.J., Sieber, J.R. and Gunsalus, R.P. (2009) Syntrophy in Anaerobic Global Carbon Cycles. Current Opinion in Biotechnology, 20, 623-634.
http://dx.doi.org/10.1016/j.copbio.2009.10.001
[11] Morita, M., Malvankar, N.S., Franks, A.E., Summers, Z.M., Giloteaux, L., Rotaru, A.E., Rotaru, C. and Lovley, D.R. (2011) Potential for Direct Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates. mBio, 2, e00159-11.
http://dx.doi.org/10.1128/mBio.00159-11
[12] Lovley, D.R. and Phillips, E.J.P. (1988) Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese. Applied and Environmental Microbiology, 54, 1472-1480.
[13] Nevin, K.P. and Lovley, D.R. (2000) Lack of Production of Electron-Shuttling Compounds or Solubilization of Fe(III) during Reduction of Insoluble Fe(III) Oxide by Geobacter metallireducens. Applied and Environmental Microbiology, 66, 2248-2251.
http://dx.doi.org/10.1128/AEM.66.5.2248-2251.2000
[14] Reguera, G., Nevin, K.P., Nicoll, J.S., Covalla, S.F., Woodard, T.L. and Lovley, D.R. (2006) Biofilm and Nanowire Production Leads to Increased Current in Geobacter sulfurreducens Fuel Cells. Applied and Environmental Microbiology, 72, 7345-7348.
http://dx.doi.org/10.1128/AEM.01444-06
[15] Bond, D.R., Holmes, D.E., Tender, L.M. and Lovley, D.R. (2002) Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments. Science, 295, 483-485.
http://dx.doi.org/10.1126/science.1066771
[16] Nevin, K.P., Richter, H., Covalla, S.F., Johnson, J.P. and Woodard, T.L. (2008) Power Output and Columbic Efficiencies from Biofilms of Geobactersulfurreducens Comparable to Mixed Community Microbial Fuel Cells. Environmental Microbiology, 10, 2505-2514.
http://dx.doi.org/10.1111/j.1462-2920.2008.01675.x
[17] Lovley, D.R. (2012) Electromicrobiology. Annual Review of Microbiology, 66, 391-409.
http://dx.doi.org/10.1146/annurev-micro-092611-150104
[18] Rosenbaum, M. and Angenent, L.T. (2010) Cathodes as Electron Donors for Microbial Metabolism: Which Extracellular Electron Transfer Mechanism Are Involved? Current Opinion in Biotechnology, 21, 259-264.
http://dx.doi.org/10.1016/j.copbio.2010.03.010
[19] Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaey, K. (2006) Microbial Fuel Cells: Methodology and Technology. Environmental Science & Technology, 17, 5181-5192.
http://dx.doi.org/10.1021/es0605016
[20] Rabaey, K. and Verstraete, W. (2005) Microbial Electrosynthesis: Revisiting the Electrical Route for Microbial Production. Nature Reviews Microbiology, 8, 706-716.
http://dx.doi.org/10.1038/nrmicro2422
[21] Borole, A.P., Reguera, G., Ringeisen, B., Wang, Z., Feng, Y. and Kim, B.H. (2011) Electroactive Biofilms: Current Status and Future Research Needs. Energy & Environmental Science, 4, 4813-4834.
http://dx.doi.org/10.1039/c1ee02511b
[22] Strik, D., Timmers, R.A., Helder, M., Steinbusch, K., Hamelers, H. and Buisman, C.J.N. (2011) Microbial Solar Cells: Applying Photosynthetic and Electrochemically Active Organisms. Trends in Biotechnology, 29, 41-49.
http://dx.doi.org/10.1016/j.tibtech.2010.10.001
[23] Nevin, K.P., Woodard, T.L., Franks, A.E., Summers, Z.M. and Lovley, D.R. (2010) Microbial Electrosynthesis: Feeding Microbes Electricity to Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds. mBio, 1, e00103-10.
http://dx.doi.org/10.1128/mbio.00103-10
[24] Lewis, N.S. and Nocera, D.G. (2006) Powering the Planet: Chemical Challenges in Solar Energy Utilization. Proceedings of the National Academy of Sciences of the United States of America, 103, 15729-15735.
http://dx.doi.org/10.1073/pnas.0603395103
[25] Lovley, D.R. (2010) Powering Microbes with Electricity: Direct Electron Transfer from Electrodes to Microbes. Environmental Microbiology, 10, 1758-2229.
[26] Strycharz, S.M. (2010) Reductive Dechlorination of 2-Chlorophenol by Anaeromyxobacter dehalogens with an Electrode Serving as the Electron Donor. Environmental Microbiology Reports, 2, 289-294.
http://dx.doi.org/10.1111/j.1758-2229.2009.00118.x
[27] Cheng, S., Xing, D., Call, D.F. and Logan, B.E. (2009) Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environmental Science & Technology, 43, 3953-3958.
http://dx.doi.org/10.1021/es803531g
[28] Lovley, D.R. (2008) The Microbe Electric: Conversion of Organic Matter to Electricity. Current Opinion in Biotechnology, 19, 564-571.
http://dx.doi.org/10.1016/j.copbio.2008.10.005
[29] Lovley, D.R., Ueki, T., Zhang, T., Malvankar, N.S. and Shrestha, P.M. (2011) Geobacter: The Microbe Electric’s Physiology, Ecology, and Practical Applications. Advances in Microbial Physiology, 59, 1-100.
http://dx.doi.org/10.1016/B978-0-12-387661-4.00004-5
[30] Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S. and Tuominen, M.T. (2005) Extracellular Electron Transfer via Microbial Nanowires. Nature, 435, 1098-1101.
http://dx.doi.org/10.1038/nature03661
[31] Leropoulos, I., Greenman, J. and Melhuish, C. (2010) Improved Energy Output Levels from Small-Scale Microbial Fuel Cells. Bioelectrochemistry, 78, 44-50.
http://dx.doi.org/10.1016/j.bioelechem.2009.05.009