IJCM  Vol.7 No.7 , July 2016
MELAS, MIDD and Beyond: m.3243A>G MT-TL1 Mutation in Adult Patients
Abstract: m.3243A>G MT-TL1 mutation is the most common mitochondrial DNA mutation that results in a wide spectrum of disorders in a maternally inherited pedigree. In adult patients, many present with symptoms and signs indistinguishable from acquired diseases and the correct diagnosis is often delayed after many years. Nevertheless, clues suggesting m.3243A>G usually exist early in the disease course but are only realized late. These hints, from the evolution of symptoms and signs, family background, investigation results, or a combination of these, enable the physician to make the correct diagnosis early, which is important for appropriate treatment and better patient care. As with other inheritable diseases, genetic counselling should be offered regarding the disease management, inheritance mode, recurrence risk, usefulness and limitations of genetic testing and reproductive options.
Cite this paper: Sheng, B. , Fong, M. , Kwan Ng, W. , Lam Chen, S. and Miu Mak, C. (2016) MELAS, MIDD and Beyond: m.3243A>G MT-TL1 Mutation in Adult Patients. International Journal of Clinical Medicine, 7, 487-495. doi: 10.4236/ijcm.2016.77054.

[1]   Skladal, D., Halliday, J. and Thorburn, D.R. (2003) Minimum Birth Prevalence of Mitochondrial Respiratory Chain Disorders in Children. Brain, 126, 1905-1912.

[2]   Gorman, G.S., Schaefer, A.M., Ng, Y., Gomez, N., Blakely, E.L., Alston, C.L., et al. (2015) Prevalence of Nuclear and Mitochondrial DNA Mutations Related to Adult Mitochondrial Disease. Annals of Neurology, 77, 753-759.

[3]   Cao, Y., Ma, Y., Zhang, Y., Li, Y., Fang, F., Wang, S., et al. (2010) Detection of Eight Frequently Encountered Point Mutations in Mitochondria in Chinese Patients Suggestive of Mitochondrial Encephalomyopathies. Mitochondrion, 10, 330-334.

[4]   Sproule, D.M. and Kaufmann, P. (2008) Mitochondrial Encephalopathy, Lactic Acidosis, and Strokelike Episodes: Basic Concepts, Clinical Phenotype, and Therapeutic Management of MELAS Syndrome. Annals of the New York Academy of Sciences, 1142, 133-158.

[5]   Kadowaki, T., Kadowaki, H., Mori, Y., Tobe, K., Sakuta, R., Suzuki, Y., et al. (1994) A Subtype of Diabetes Mellitus Associated with a Mutation of Mitochondrial DNA. New England Journal of Medicine, 330, 962-968.

[6]   Nesbitt, V., Pitceathly, R.D., Turnbull, D.M., Taylor, R.W., Sweeney, M.G., Mudanohwo, E.E., et al. (2013) The UK MRC Mitochondrial Disease Patient Cohort Study: Clinical Phenotypes Associated with the m.3243A>G Mutation— Implications for Diagnosis and Management. Journal of Neurology, Neurosurgery and Psychiatry, 84, 936-938.

[7]   Manwaring, N., Jones, M.M., Wang, J.J., Rochtchina, E., Howard, C., Mitchell, P. and Sue, C.M. (2007) Population Prevalence of the MELAS A3243G Mutation. Mitochondrion, 7, 230-233.

[8]   Suomalainen, A., Elo, J.M., Pietilainen, K.H., Hakonen, A.H., Sevastianova, K., Korpela, M., et al. (2011) FGF-21 as a Biomarker for Muscle-Manifesting Mitochondrial Respiratory Chain Deficiencies: A Diagnostic Study. Lancet Neurology, 10, 806-818.

[9]   Koene, S., de Laat, P., van Tienoven, D.H., Vriens, D., Brandt, A.M., Sweep, F.C., et al. (2014) Serum FGF21 Levels in Adult m.3243A>G Carriers: Clinical Implications. Neurology, 83, 125-133.

[10]   Shanske, S., Pancrudo, J., Kaufmann, P., Engelstad, K., Jhung, S., Lu, J., et al. (2004) Varying Loads of the Mitochondrial DNA A3243G Mutation in Different Tissues: Implications for Diagnosis. American Journal of Medical Genetics Part A, 130A, 134-137.

[11]   Saneto, R.P., Friedman, S.D. and Shaw, D.W.W. (2008) Neuroimaging of Mitochondrial Disease. Mitochondrion, 8, 396-413.

[12]   Abe, K., Yoshimura, H., Tanaka, H., Fujita, N., Hikita, T. and Sakoda, S. (2004) Comparison of Conventional and Diffusion-Weighted MRI and Proton MR Spectroscopy in Patients with Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Events. Neuroradiology, 46, 113-117.

[13]   Oppenheim, C., Galanaud, D., Samson, Y., Sahel, M., Dormont, D., Wechsler, B. and Marsault, C. (2000) Can Diffusion Weighted Magnetic Resonance Imaging Help Differentiate Stroke from Stroke-Like Events in MELAS? Journal of Neurology, Neurosurgery and Psychiatry, 69, 248-250.

[14]   Jose da Rocha, A., Tulio Braga, F., Carlos Martins Maia Jr., A., Jorge da Silva, C., Toyama, C., Pereira Pinto Gama, H., et al. (2008) Lactate Detection by MRS in Mitochondrial Encephalopathy: Optimization of Technical Parameters. Journal of Neuroimaging, 18, 1-8.

[15]   Demarest, S.T., Whitehead, M.T., Turnacioglu, S., Pearl, P.L. and Gropman, A.L. (2014) Phenotypic Analysis of Epilepsy in the Mitochondrial Encephalomyopathy, Lactic Acidosis, and Strokelike Episodes-Associated Mitochondrial DNA A3243G Mutation. Journal of Child Neurology, 29, 1249-1256.

[16]   Vydt, T.C., de Coo, R.F., Soliman, O.I., Ten Cate, F.J., van Geuns, R.J., Vletter, W.B., et al. (2007) Cardiac Involvement in Adults with m.3243A > G MELAS Gene Mutation. American Journal of Cardiology, 99, 264-269.

[17]   Sproule, D.M., Kaufmann, P., Engelstad, K., Starc, T.J., Hordof, A.J. and De Vivo, D.C. (2007) Wolff-Parkinson-White Syndrome in Patients with Melas. Archives of Neurology, 64, 1625-1627.

[18]   Ng, M.C., Yeung, V.T., Chow, C.C., Li, J.K., Smith, P.R., Mijovic, C.H., et al. (2000) Mitochondrial DNA A3243G Mutation in Patients with Early- or Late-Onset Type 2 Diabetes Mellitus in Hong Kong Chinese. Clinical Endocrinology, 52, 557-564.

[19]   Murphy, R., Turnbull, D.M., Walker, M. and Hattersley, A.T. (2008) Clinical Features, Diagnosis and Management of Maternally Inherited Diabetes and Deafness (MIDD) Associated with the 3243A > G Mitochondrial Point Mutation. Diabetic Medicine, 25, 383-399.

[20]   El-Hattab, A.W., Emrick, L.T., Hsu, J.W., Chanprasert, S., Jahoor, F., Scaglia, F. and Craigen, W.J. (2014) Glucose Metabolism Derangements in Adults with the MELAS m.3243A > G Mutation. Mitochondrion, 18, 63-69.

[21]   Wiederkehr, A. and Wollheim, C.B. (2012) Mitochondrial Signals Drive Insulin Secretion in the Pancreatic Beta-Cell. Molecular and Cellular Endocrinology, 353, 128-137.

[22]   Rahman, S. (2013) Gastrointestinal and Hepatic Manifestations of Mitochondrial Disorders. Journal of Inherited Metabolic Disease, 36, 659-673.

[23]   Chapman, T.P., Hadley, G., Fratter, C., Cullen, S.N., Bax, B.E., Bain, M.D., et al. (2014) Unexplained Gastrointestinal Symptoms: Think Mitochondrial Disease. Digestive and Liver Disease, 46, 1-8.

[24]   Martin-Hernandez, E., Garcia-Silva, M.T., Vara, J., Campos, Y., Cabello, A., Muley, R., et al. (2005) Renal Pathology in Children with Mitochondrial Diseases. Pediatric Nephrology, 20, 1299-1305.

[25]   Emma, F., Montini, G., Salviati, L. and Dionisi-Vici, C. (2011) Renal Mitochondrial Cytopathies. International Journal of Nephrology, 2011, Article ID: 609213.

[26]   Koga, Y., Povalko, N., Nishioka, J., Katayama, K., Kakimoto, N. and Matsuishi, T. (2010) MELAS and L-Arginine Therapy: Pathophysiology of Stroke-Like Episodes. Annals of the New York Academy of Sciences, 1201, 104-110.

[27]   Koga, Y., Povalko, N., Nishioka, J., Katayama, K., Yatsuga, S. and Matsuishi, T. (2012) Molecular Pathology of MELAS and L-Arginine Effects. Biochimicaet Biophysica Acta, 1820, 608-614.

[28]   Koga, Y.M.D.P., Ishibashi, M.M.D.P., Ueki, I.M., Yatsuga, S.M., Fukiyama, R.M., Akita, Y.M.D.P. and Matsuishi, T.M.D.P. (2002) Effects of L-Arginine on the Acute Phase of Strokes in Three Patients with MELAS. Neurology, 58, 827-828.

[29]   Koga, Y.M.D.P., Akita, Y.M.D.P., Nishioka, J.M., Yatsuga, S.M., Povalko, N.M., Tanabe, Y.M.D.P., et al. (2005) L-Arginine Improves the Symptoms of Strokelike Episodes in MELAS. Neurology, 64, 710-712.

[30]   Nanau, R.M. andNeuman, M.G. (2013) Adverse Drug Reactions Induced by Valproic Acid. Clinical Biochemistry, 46, 1323-1338.

[31]   Finsterer, J. and Segall, L. (2010) Drugs Interfering with Mitochondrial Disorders. Drug and Chemical Toxicology, 33, 138-151.

[32]   Jeppesen, T.D., Schwartz, M., Olsen, D.B., Wibrand, F., Krag, T., Duno, M., et al. (2006) Aerobic Training Is Safe and Improves Exercise Capacity in Patients with Mitochondrial Myopathy. Brain, 129, 3402-3412.

[33]   Jeppesen, T.D., Duno, M., Schwartz, M., Krag, T., Rafiq, J., Wibrand, F. and Vissing, J. (2009) Short- and Long-Term Effects of Endurance Training in Patients with Mitochondrial Myopathy. European Journal of Neurology, 16, 1336-1339.

[34]   Bishop, D.J., Granata, C. and Eynon, N. (2014) Can We Optimise the Exercise Training Prescription to Maximise Improvements in Mitochondria Function and Content? Biochimicaet Biophysica Acta, 1840, 1266-1275.

[35]   Tarnopolsky, M.A. (2014) Exercise as a Therapeutic Strategy for Primary Mitochondrial Cytopathies. Journal of Child Neurology, 29, 1225-1234.

[36]   Taivassalo, T., Fu, K., Johns, T., Arnold, D., Karpati, G. and Shou-bridge, E.A. (1999) Gene Shifting: A Novel Therapy for Mitochondrial Myopathy. Human Molecular Genetics, 8, 1047-1052.

[37]   Vento, J.M. and Pappa, B. (2013) Genetic Counseling in Mitochondrial Disease. Neurotherapeutics, 10, 243-250.

[38]   Nesbitt, V., Pitceathly, R.D., Turnbull, D.M., Taylor, R.W., Sweeney, M.G., Mudanohwo, E.E., et al. (2013) The UK MRC Mitochondrial Disease Patient Cohort Study: Clinical Phenotypes Associated with the m.3243A > G Mutation—Implications for Diagnosis and Management. Journal of Neurology, Neurosurgery and Psychiatry, 84, 936-938.

[39]   Poulton, J. and Marchington, D.R. (2000) Progress in Genetic Counselling and Prenatal Diagnosis of Maternally Inherited mtDNA Diseases. Neuromuscular Disorders, 10, 484-487.