ABB  Vol.2 No.4 , August 2011
Low molecular fucoidan and its macromolecular complex with bee venom melittin
Abstract: Low molecular weight (LMW) fucoidan, obtained by free radical depolymerization of high molecular polysaccharide extract of brown algae Hizikia fusiformis, was complexed with HPLC purified bee venom melittin. Water soluble form of the LMW fucoidan – melittin complex shows increased anti-inflammatory activity, inhibiting the production of nitric oxide in murine macrophage cell line Raw 264.7. The LMW fucoidan:melitin complex obtained in this study showed good biological activities, resulting in 2-fold reduction of the melittin toxicity. The fucoidan: melittin macromolecular complex obtained should be useful in future therapeutic applications.
Cite this paper: nullMavlonov, G. , Lee, J. , Shin, L. , Yi, T. and Abdurakhmonov, I. (2011) Low molecular fucoidan and its macromolecular complex with bee venom melittin. Advances in Bioscience and Biotechnology, 2, 298-303. doi: 10.4236/abb.2011.24043.

[1]   Angulo, Y., Lomonte B. (2003) Inhibitory effect of fucoidan on the activities of crotaline snake venom myotoxic phospholipase A2. Biochemical Pharmacology, 66, 1993-2000.

[2]   Kim, E.J., Park, S.Y., Lee, J.Y., Park, J.H. (2010) Fucoidan present in brown algae induces Apoptosis of human colon cancer cells. BMC Gastroenterol., 22, 10:96.

[3]   Suzuki, K., Sakiyama, Y., Usui, M., Obama, T., Kato, R., Itabe, H., Yamamoto, M. (2010) Oxidized low-density lipoprotein increases interleukin-8 production in human gingival epithelial cell line Ca9-22. J Periodontal Res., 45(4), 488-495.

[4]   Kim, W.J., Koo, Y.K., Jung, M.K., Moon, H.R., Kim, S.M., Synytsya, A., Yun-Choi, H.S.,Kim, Y.S., Park, J.K., Park, Y.I. (2010) Anticoagulating activities of low-molecular weight fuco-oligosaccharides prepared by enzymatic digestion of fucoidan from the sporophyll of Korean Undaria pinnatifida. Arch Pharm Res., 33, 125-131.

[5]   Cui, Y.Q., Luo, D.Z., Wang, X.M. (2010) Fucoidan: advances in the study of its anti-inflammatory and anti-oxidative effects. Yao Xue Xue Bao, 43, 1186-1189.

[6]   Sinha, S., Astani, A., Ghosh, T., Schnitzler, P., Ray, B. (2010) Polysaccharides from Sargassum tenerrimum: structural features, chemical modification and anti-viral activity. Phytochemistry, 71, 235-242.

[7]   Mahony, M.C., Clark, G.F., Oehninger, S., Acosta, A.A., Hodgen, G.D. (1993) Fucoidan binding activity and its localization on human spermatozoa. Contraception, 48, 277-289.

[8]   Li, N., Zhang, Q., Song J. (2005) Toxicological evaluation of fucoidan extracted from Laminaria japonica in Wistar rats. Food Chem Toxicol., 43, 421-426.

[9]   Jouault, S.C., Chevolot, L., Helley, D., Ratiskol, J., Bros, A., Sinquin, C., Roger, O., Fisher, A.M. (2001) Characterization, chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernus. Biochim. Biophys. Acta, 1528, 141-151.

[10]   Nardella, A., Chubet, F., Boisson-Vidal, C.C., Blondin, C., Durand, P., Josefonvicz, J. (1996) Anticoagulant low molecular weight fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from the brown seaweed Ascophyllum nodosum. Carbohydrate Research, 289, 201-208.

[11]   Kim, J.I., Yang, E.J., Lee, M.S., Kim, Y.S., Huh, Y., Cho, I.H., Kang, S., Koh, H.K. (2011) Bee venom reduces neuroinflammation in the MPTP-induced model of Parkinson's disease. Int J. Neurosci., 121, 209-217.

[12]   Jeong, N., Kim, J.Y., Park, S.C., Lee, J.K., Gopal, R., Yoo, S., Son, B.K., Hahm, J.S., Park, Y., Hahm, K.S. (2010) Antibiotic and synergistic effect of Leu-Lys rich peptide against antibiotic resistant microorganisms isolated from patients with cholelithiasis. Biochem. Biophys. Res. Commun., 399, 581-586.

[13]   Ziyavitdinov, Zh.,F., Inogamov, U.K., Sagdiev, N.Zh., Salikhov, Sh.I. (1995) Development of a method for the complex isolation of physiologically active components from bee venom. Chemistry of Natural Compounds, 31, 726-730.

[14]   Azofeifa, K., Angulo Y., Lomonte B. (2008) Ability of fucoidan to prevent muscle necrosis induced by snake venom myotoxins: comparison of high- and low-molecular weight fractions. Toxicon, 51, 373-380.

[15]   Blondelle, S.E., Houghten, R.A. (1991) Hemolytic and antimicrobial activities of the twenty-four individual omission of melittin. Biochemistry, 30, 4671-4687.

[16]   Klocek, G., Seelig, J. (2008) Melittin Interaction with sulfated cell surface sugars. Biochemistry, 47, 2841-2849.

[17]   Cai, S., Dufner-Beattie, J.L., Prestwich, G.D. (2004) A selective protein sensor for heparin detection. Anal. Biochem., 326, 33-41.

[18]   Pratt, J.P., Ravnic, D.J., Huss, H.T., Jiang, X., Orozco, B.S., Mentzer, S.J. (2005) Melittin-induced membrane permeability: a nonosmotic mechanism of cell death. In Vitro Cellular & Developmental Biology. Animal, 41, 349-355.

[19]   Lomonte, B., Moreno, E., Tarkowski, A., Hanson, L. A,, Maccarana, M. (1994) Neutralizing interaction between heparins and myotoxin II, a lysine 49 phospholipase A2 from Bothrops asper snake venom. Identification of a heparin-binding and cytolytic toxin region by the use of synthetic peptides and molecular modeling. J Biol Chem., 269, 29867-29873.

[20]   Lomonte, B., Tarkowski, A., Bagge, U., Hanson, L. A. (1994) Neutralization of the cytolytic and myotoxic activities of phospholipases A2 from Bothrops asper snake venom by glycosaminoglycans of the heparin/heparan sulfate family. Biochem Pharmacol., 47, 1509-1518.

[21]   Luiking, Y. C., Engelen, M.P., Deutz, N. E. (2010) Regulation of nitric oxide production in

[22]   health and disease. Curr Opin Clin Nutr Metab Care, 13, 97-104.

[23]   Chen, K., Pittman, R.N., Popel, AS. (2008) Nitric oxide in the vasculature: where does it come from and where does it go? A quantitative perspective. Antioxid Redox Signal, 10, 1185–1198.

[24]   Moncada, S., Bolanos, J.P. (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem., 97, 1676–1689.