Back
 OALibJ  Vol.2 No.5 , May 2015
Dark Energy Stars and the Cosmic Microwave Background
Abstract: Cosmological models with a large cosmological constant are unstable due to quantum critical fluctuations at the de Sitter horizon. Due to this instability the space-time in these models will quickly evolve into a Friedmann-like expanding universe containing dark energy stars and radiation. In this paper it is pointed out that this provides a simple explanation for both the observed radiation entropy per gram of dark matter and the level of temperature fluctuations in the cosmic microwave background. A novel prediction is that large dark energy stars provide the seeds for the formation of galaxies.
Cite this paper: Chapline, G. (2015) Dark Energy Stars and the Cosmic Microwave Background. Open Access Library Journal, 2, 1-7. doi: 10.4236/oalib.1101174.
References

[1]   Lemaitre, G. (1931) A Homogeneous Universe of Constant Mass and Increasing Radius. Monthly Notices of the Royal Astronomical Society, 91, 483-490.
http://dx.doi.org/10.1093/mnras/91.5.483

[2]   Eddington, A.S. (1931) The End of the World from the Standpoint of Mathematical Physics. Nature, 127, 447-453.
http://dx.doi.org/10.1038/127447a0

[3]   Lemaitre, G. (1931) The Beginning of the World from the Point of View of Quantum Theory. Nature, 127, 706.
http://dx.doi.org/10.1038/127706b0

[4]   Chapline, G. (1992) Information Flow in Quantum Mechanics: The Quantum Maxwell Demon. Black, T., et al., Eds., Proceedings of the Santa Fe Conference on the Foundations of Quantum Mechanics, World Scientific, Singapore.

[5]   Chapline, G., Hohfield, E., Laughlin, R.B. and Santiago, D. (2001) Quantum Phase Transitions and the Breakdown of Classical General Relativity. Philosophical Magazine Part B, 81, 235-254.
http://dx.doi.org/10.1080/13642810108221981

[6]   Braunstein, S.L., Pirandola, S. and Zyczkowski, K. (2013) Better Late than Never: Information Retrieval from Black Holes. Physical Review Letters, 110, Article ID: 101301.
http://dx.doi.org/10.1103/PhysRevLett.110.101301

[7]   Chapline, G. (2004) Dark Energy Stars. Proceedings of the Texas Conference on Relativistic Astrophysics, Stanford, 12-17 December 2004.

[8]   Mottola, E. (2010) New Horizons in Gravity: The Trace Anomaly, Dark Energy and Condensate Stars. Acta Physica Polonica, B41, 2031.

[9]   Kolb, E.R. and Turner, M. (1990) The Early Universe. Addison-Wesley, New York.

[10]   Lemaitre, G. (1997) The Expanding Universe. General Relativity and Gravitation, 29, 641-680.
http://dx.doi.org/10.1023/A:1018855621348

[11]   Nauenberg, M. and Chapline, G. (1973) Determination of the Properties of Cold Stars in General Relativity by a Variational Method. The Astrophysical Journal, 179, 277-287.
http://dx.doi.org/10.1086/151868

[12]   Komatsu, E., Dunkley, J., Nolta, M.R., Bennett, C.L., Gold, B., Hinshaw, G., et al. (2009) Five Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation. The Astrophysical Journal Supplement Series, 180, 330-376.

[13]   Chapline, G. (2003) Quantum Phase Transitions and the Failure of General Relativity. International Journal of Modern Physics A, 18, 3587-3590.
http://dx.doi.org/10.1142/S0217751X03016380

[14]   Chapline, G. (1975) Hadron Physics and Primordial Black Holes. Physical Review D, 12, 2949-2954.
http://dx.doi.org/10.1103/PhysRevD.12.2949

[15]   Harrison, E. (1970) Fluctuations at the Threshold of Classical Cosmology. Physical Review D, 1, 2726-2730.
http://dx.doi.org/10.1103/PhysRevD.1.2726

[16]   Zeldovich, Y.B. (1972) A Hypothesis, Unifying the Structure and the Entropy of the Universe. Monthly Notices of the Royal Astronomical Society, 160, 1P-3P.
http://dx.doi.org/10.1093/mnras/160.1.1P

[17]   Peebles, P.J.E. and Yu, J.T. (1970) Primordial Adiabatic Perturbation in an Expanding Universe. The Astrophysical Journal, 162, 815-836.
http://dx.doi.org/10.1086/150713

[18]   Chapline, G. (2009) Dark Energy Stars and AdS/CFT. Proceedings of the 12th Marcel Grossman Meeting, Paris, 12-18 July 2009, 2312-2314.

[19]   Schneider, P., Ehlers, J. and Falco, E.E. (1992) Gravitational Lenses. Springer, Heidelberg.

[20]   Alcock, C., Allen, W.H., Allsman, R.A., Alves, D., Axelrod, T.S., Banks, T.S., et al. (1997) MACHO Alert 95-30: First Real-Time Observation of Extended Source Effects in Gravitational Microlensing. The Astrophysical Journal, 491, 436-450.
http://dx.doi.org/10.1086/304974

[21]   Bennett, C.L., Kogut, A., Hinshaw, G., Banday, A.J., Wright, E.L., Gorski, K.M., et al. (1994) Cosmic Temperature Fluctuations from Two Years of COBE Differential Microwave Radiometers Observations. The Astrophysical Journal, 436, 423-442.
http://dx.doi.org/10.1086/174918

[22]   Blumenthal, G., Faber, S., Primack, J.R. and Rees, M.J. (1984) Formation of Galaxies and Large Scale Structure with Cold Dark Matter. Nature, 311, 517-525.
http://dx.doi.org/10.1038/311517a0

[23]   Feynman, R.P. (2003) Lectures on Gravitation. Westview Press, Boulder, 181-184.

[24]   Khlopov, M.Y., Rubin, S.G. and Sakharov, A. (2002) Strong Primordial Inhomogeneities and Galaxy Formation. Gravitation & Cosmology, 8, 57-65.

[25]   Lemaitre, G. (1931) A Homogeneous Universe of Constant Mass and Increasing Radius. Monthly Notices of the Royal Astronomical Society, 91, 483-490.
http://dx.doi.org/10.1093/mnras/91.5.483

[26]   Eddington, A.S. (1931) The End of the World from the Standpoint of Mathematical Physics. Nature, 127, 447-453.
http://dx.doi.org/10.1038/127447a0

[27]   Lemaitre, G. (1931) The Beginning of the World from the Point of View of Quantum Theory. Nature, 127, 706.
http://dx.doi.org/10.1038/127706b0

[28]   Chapline, G. (1992) Information Flow in Quantum Mechanics: The Quantum Maxwell Demon. Black, T., et al., Eds., Proceedings of the Santa Fe Conference on the Foundations of Quantum Mechanics, World Scientific, Singapore.

[29]   Chapline, G., Hohfield, E., Laughlin, R.B. and Santiago, D. (2001) Quantum Phase Transitions and the Breakdown of Classical General Relativity. Philosophical Magazine Part B, 81, 235-254.
http://dx.doi.org/10.1080/13642810108221981

[30]   Braunstein, S.L., Pirandola, S. and Zyczkowski, K. (2013) Better Late than Never: Information Retrieval from Black Holes. Physical Review Letters, 110, Article ID: 101301.
http://dx.doi.org/10.1103/PhysRevLett.110.101301

[31]   Chapline, G. (2004) Dark Energy Stars. Proceedings of the Texas Conference on Relativistic Astrophysics, Stanford, 12-17 December 2004.

[32]   Mottola, E. (2010) New Horizons in Gravity: The Trace Anomaly, Dark Energy and Condensate Stars. Acta Physica Polonica, B41, 2031.

[33]   Kolb, E.R. and Turner, M. (1990) The Early Universe. Addison-Wesley, New York.

[34]   Lemaitre, G. (1997) The Expanding Universe. General Relativity and Gravitation, 29, 641-680.
http://dx.doi.org/10.1023/A:1018855621348

[35]   Nauenberg, M. and Chapline, G. (1973) Determination of the Properties of Cold Stars in General Relativity by a Variational Method. The Astrophysical Journal, 179, 277-287.
http://dx.doi.org/10.1086/151868

[36]   Komatsu, E., Dunkley, J., Nolta, M.R., Bennett, C.L., Gold, B., Hinshaw, G., et al. (2009) Five Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation. The Astrophysical Journal Supplement Series, 180, 330-376.

[37]   Chapline, G. (2003) Quantum Phase Transitions and the Failure of General Relativity. International Journal of Modern Physics A, 18, 3587-3590.
http://dx.doi.org/10.1142/S0217751X03016380

[38]   Chapline, G. (1975) Hadron Physics and Primordial Black Holes. Physical Review D, 12, 2949-2954.
http://dx.doi.org/10.1103/PhysRevD.12.2949

[39]   Harrison, E. (1970) Fluctuations at the Threshold of Classical Cosmology. Physical Review D, 1, 2726-2730.
http://dx.doi.org/10.1103/PhysRevD.1.2726

[40]   Zeldovich, Y.B. (1972) A Hypothesis, Unifying the Structure and the Entropy of the Universe. Monthly Notices of the Royal Astronomical Society, 160, 1P-3P.
http://dx.doi.org/10.1093/mnras/160.1.1P

[41]   Peebles, P.J.E. and Yu, J.T. (1970) Primordial Adiabatic Perturbation in an Expanding Universe. The Astrophysical Journal, 162, 815-836.
http://dx.doi.org/10.1086/150713

[42]   Chapline, G. (2009) Dark Energy Stars and AdS/CFT. Proceedings of the 12th Marcel Grossman Meeting, Paris, 12-18 July 2009, 2312-2314.

[43]   Schneider, P., Ehlers, J. and Falco, E.E. (1992) Gravitational Lenses. Springer, Heidelberg.

[44]   Alcock, C., Allen, W.H., Allsman, R.A., Alves, D., Axelrod, T.S., Banks, T.S., et al. (1997) MACHO Alert 95-30: First Real-Time Observation of Extended Source Effects in Gravitational Microlensing. The Astrophysical Journal, 491, 436-450.
http://dx.doi.org/10.1086/304974

[45]   Bennett, C.L., Kogut, A., Hinshaw, G., Banday, A.J., Wright, E.L., Gorski, K.M., et al. (1994) Cosmic Temperature Fluctuations from Two Years of COBE Differential Microwave Radiometers Observations. The Astrophysical Journal, 436, 423-442.
http://dx.doi.org/10.1086/174918

[46]   Blumenthal, G., Faber, S., Primack, J.R. and Rees, M.J. (1984) Formation of Galaxies and Large Scale Structure with Cold Dark Matter. Nature, 311, 517-525.
http://dx.doi.org/10.1038/311517a0

[47]   Feynman, R.P. (2003) Lectures on Gravitation. Westview Press, Boulder, 181-184.

[48]   Khlopov, M.Y., Rubin, S.G. and Sakharov, A. (2002) Strong Primordial Inhomogeneities and Galaxy Formation. Gravitation & Cosmology, 8, 57-65.

 
 
Top