Back
 OALibJ  Vol.2 No.5 , May 2015
Nuclear Lattices, Mass and Stability
Abstract: A nucleus has a lattice configuration, a mass, and a half-life. There are many nuclear theories: BCS formalism focuses on Neutron-proton (np) pairing; AB initio calculation uses NCFC model; SEMF uses water drop model. However, the accepted theories give neither précised lattices of lower mass nuclei, nor an accurate calculation of nuclear mass. This paper uses the results of the latest Unified Field Theory (UFT) to derive a lattice configuration for each isotope. We found that a simplified BCS formalism can be used to calculate energies of the predicted lattice structure. Furthermore, mass calculation results and NMR data can be used to determine the right lattice structure. Our results demonstrate the inseparable relationship among nuclear lattices, mass, and stability. We anticipate that our essay will provide a new method that can predict the lattice of each isotope without the use of advanced mathematics. For example, the lattice of an unknown nucleus can be predicted using trial and error. The mass of the nuclear lattice can be calculated. If the calculation result matches the experimental data and NMR pattern supports the lattice as well, then the predicted nuclear lattice configuration is valid.
Cite this paper: Cao, H. , Cao, Z. and Qiang, W. (2015) Nuclear Lattices, Mass and Stability. Open Access Library Journal, 2, 1-22. doi: 10.4236/oalib.1101504.
References

[1]   Berbiche, A., Fellah, M. and Allal, N.H. (2014) Number-Projected Isovector Neutron-Proton Pairing Effect in Odd Mass Nuclei. Journal of Theoretical and Applied Physics, 8, 118.

[2]   Goodman, A. (1979) Hartree-Fock-Bogoliubov Theory. Advances in Nuclear Physics, 11, 263-366.

[3]   Civitarese, O. and Reboiro, M. (1997) Proton-Neutron Pairing Effects in Medium and Heavy Mass Nuclei. Physical Review C, 56, 1179-1182.
http://dx.doi.org/10.1103/PhysRevC.56.1179

[4]   Civitarese, O., Reboiro, M. and Vogel, P. (1997) Neutron-Proton Pairing in the BCS Approach. Physical Review C, 56, 1840-1843.
http://dx.doi.org/10.1103/PhysRevC.56.1840

[5]   Vogel, P. (1998) Neutron-Proton Pairing. Czechoslovak Journal of Physics, 48, 269-276.
http://dx.doi.org/10.1023/A:1021292614670

[6]   Simkovic, F., Moustakidis, C.C., Pacearescu, L. and Faessler, A. (2003) Proton-Neutron Pairing in the Deformed BCS Approach. Physical Review C, 68, Article ID: 054319.
http://dx.doi.org/10.1103/PhysRevC.68.054319

[7]   Mokhtari, D., Ami, I., Fellah, M. and Allal, N.H. (2008) Neutron-Proton Isovector Pairing Effect on the Nuclear Moment of Inertia. International Journal of Modern Physics E, 17, 655-667.
http://dx.doi.org/10.1142/S0218301308010064

[8]   Fellah, M., Allal, N.H., Belabbas, M., Oudih, M.R. and Benhamouda, N. (2007) Temperature-Dependent Isovector Pairing Gap Equations Using a Path Integral Approach. Physical Review C, 76, Article ID: 047306.
http://dx.doi.org/10.1103/PhysRevC.76.047306

[9]   Skrypnykm, T. (2012) Rational R-Matrices, Higher Rank Lie Algebras and Integrable Proton-Neutron BCS Models. Nuclear Physics B, 863, 435-469.

[10]   Cao, Z.L. and Cao, H.G. (2014) Unified Field Theory and Topology of Nuclei. International Journal of Physics, 2, 15-22.
http://dx.doi.org/10.12691/ijp-2-1-4

[11]   Cao, Z.L., Cao, H.G. and Qiang, W. (2015) Unified Field Theory and Topology of Atom. American Journal of Modern Physics, Special Issue, 4, 1-7.

[12]   Cao, Z.L. and Cao, H.G. (2014) Cubic Atom and Crystal Structures. International Journal of Physics, 2, 277-281.
http://dx.doi.org/10.12691/ijp-2-6-11

[13]   Cao, Z.L., Cao, H.G. and Qiang, W. (2015) Theory of Everything. Frontiers of Astronomy, Astrophysics and Cosmology, 1, 31-36.

[14]   Cao, Z.L. and Cao, H.G. (2013) Unified Field Theory and the Configuration of Particles. International Journal of Physics, 1, 151-161.

[15]   Cao, Z.L. and Cao, H.G. (2014) Unified Field Theory and Foundation of Physics. International Journal of Physics, 2, 158-164.
http://dx.doi.org/10.12691/ijp-2-5-5

[16]   Cao, Z.L. and Cao, H.G. (2013) Unified Field Theory. American Journal of Modern Physics, 2, 292-298.
http://dx.doi.org/10.11648/j.ajmp.20130206.14

[17]   Cao, Z.L. and Cao, H.G. (2013) Unified Field Theory and the Hierarchical Universe. International Journal of Physics, 1, 162-170.

[18]   Cao, H.G. and Cao, Z.L. (2013) Drifting Clock and Lunar Cycle. International Journal of Physics, 1, 121-127.

[19]   Cao, Z.L. and Cao, H.G. (2013) Non-Scattering Photon Electron Interaction. Physics and Materials Chemistry, 1, 9-12.

[20]   Cao, Z.L. and Cao, H.G. (2013) SR Equations without Constant One-Way Speed of Light. International Journal of Physics, 1, 106-109.

[21]   Myers, E.G., Wagner, A., Kracke, H. and Wesson B.A. (2015) Atomic Masses of Tritium and Helium-3. Physical Review Letters, 114, Article ID: 013003.

[22]   Chekhovich, E.A., Hopkinson, M., Skolnick, M.S. and Tartakovskii, A.I. (2015) Suppression of Nuclear Spin Bath Fluctuations in Self-Assembled Quantum Dots Induced by Inhomogeneous Strain. Nature Communications, 6, 6348.
http://dx.doi.org/10.1038/ncomms7348

[23]   Dong, Y., Dong, L., Gong, M. and Pu, H. (2015) Dynamical Phases in Quenched Spin-Orbit-Coupled Degenerate Fermi Gas. Nature Communications, 6, 6103.
http://dx.doi.org/10.1038/ncomms7103

[24]   Koizumi, H., Okazaki, A., Ghantous, M.A. and Tachiki, M. (2014) Supercurrent Flow through the Network of Spin-Vortices in Cuprates. Journal of Superconductivity and Novel Magnetism, 27, 2435-2446.
http://dx.doi.org/10.1007/s10948-014-2626-9

[25]   Tan, Z.B., Cox, D., Nieminen, T., Lähteenmäki, P., Golubev, D., Lesovik, G.B. and Hakonen P.J. (2015) Cooper Pair Splitting by Means of Graphene Quantum Dots. Physical Review Letters, 114, Article ID: 096602.

[26]   Tan, D., Weber S.J., Siddiqi, I., Mølmer, K. and Murch, K.W. (2015) Prediction and Retrodiction for a Continuously Monitored Superconducting Qubit. Physical Review Letters, 114, Article ID: 090403.

[27]   Murmann, S., Bergschneider, A., Klinkhamer, V.M., Zürn, G., Lompe, T. and Jochim, S. (2015) Two Fermions in a Double Well: Exploring a Fundamental Building Block of the Hubbard Model. Physical Review Letters, 114, Article ID: 080402.

[28]   Giraud, O., Braun, D., Baguette, D., Bastin, T. and Martin, J. (2015) Tensor Representation of Spin States. Physical Review Letters, 114, Article ID: 080401.

[29]   Valderrama, M.P. and Phillips, D.R. (2015) Power Counting of Contact-Range Currents in Effective Field Theory. Physical Review Letters, 114, Article ID: 082502.

[30]   Phillips, D.R., Samart, D. and Schat, C. (2015) Parity-Violating Nucleon-Nucleon Force in the 1/Nc Expansion. Physical Review Letters, 114, Article ID: 062301

[31]   Stetcu, I., Bertulani, C.A., Bulgac, A., Magierski, P. and Roche K.J. (2015) Relativistic Coulomb Excitation within the Time Dependent Super Fluid Local Density Approximation. Physical Review Letters, 114, Article ID: 012701

[32]   Borsanyi, S., Durr, S., Fodor, Z., Hoelbling, C., Katz, S.D., Krieg, S., et al. (2015) Ab Initio Calculation of the Neutron-Proton Mass Difference. Science, 347, 1452-1455.

[33]   Freedman, R. and Young, H. (2004) Sears and Zemanskey’s University Physics with Modern Physics. 11th Edition, Benjamin-Cummings Pub Co, San Francisco, 1633-1634.

 
 
Top