Back
 ENG  Vol.8 No.7 , July 2016
Annual Runoff and Sediment in Duhok Reservoir Watershed Using SWAT and WEPP Models
Abstract: Estimation of runoff volume and sediment load is the main problem that affects the performance of dams due to the reduction in the storage capacity of their reservoirs and their effect on dam efficiency and operation schedule. The simulation models can be considered for this purpose if the continuous field measurements are not available. Soil and Water Assessment Tool (SWAT) and Water Erosion Prediction Project (WEPP) models were applied to estimate the annual runoff volume and sediment load for Duhok Dam Reservoir in north of Duhok/Iraq for the period 1988-2011. The estimated annual runoff volume varied from 2.3 to 34.7 MCM for considered period. Those values were affected by rainfall depth, intensity and runoff coefficient. The resultant annual runoff coefficient for the studied area ranged from 0.05 to 0.35 (average was 0.18) causing an average runoff volume of about 14 MCM. The results of sediment routing indicated that the values of sediment yields varied from 50 to 1400 t/km2/year depending on sub basin properties. The average annual sediment load from the whole watershed is about 120 × 103 ton. The estimated total sediment arrived to Duhok Reservoir for the considered period 1988-2011 was about 2.9 × 106 ton. The results indicate that both models gave reasonable results in comparison with measured values. Based on statistical criteria, the results of both models are close to gather.
Cite this paper: Mohammad, M. , Al-Ansari, N. and Knutsson, S. (2016) Annual Runoff and Sediment in Duhok Reservoir Watershed Using SWAT and WEPP Models. Engineering, 8, 410-422. doi: 10.4236/eng.2016.87038.
References

[1]   Srinivasan, R.T., Ramanarayanan, G.A. and Bednarz, S. (1998) Large Area Hydrologic Modeling and Assessment Part-II Model Application. Journal of the American Water Resources Association, 34, 91-101.

[2]   US Department of Interior, Bureau of Reclamation (1972) Erosion and Sedimentation Manual. US Department of USDA, Soil Conservation Service, National Engineering Handbook Section 4 Hydrology, Chapters 4-10.

[3]   Fernandez, C.J., McCool Wu, D. and Stockle, C. (2003) Estimation Water Erosion and Sediment Yield with GIS, RUSLE, and SEDD. Journal of Soil and Water Conservation, 58, 128-136.

[4]   Kim, H. (2006) Soil Erosion modeling Using RUSLE and GIS on the IMHA Watershed. South Korea, Master Thesis. Colorado State University, Colorado.

[5]   Gitas, I., Douros, K., Minakou, C., Silleos, G. and Karydas, C. (2009) Multi-Temporal Soil Erosion Risk Assessment in N. chalkidiki Using a Modified Usle Raster Model. EARSeL e-Proceedings, 8, 40-52.

[6]   Baigorria, G. and Romero, C. (2007) Assessment of Erosion Hotspots in a Watershed: Integrating the WEPP Model and GIS in a Case Study in the Peruvian Andes. Environmental Modelling and Software, 22, 1175-1183.
http://dx.doi.org/10.1016/j.envsoft.2006.06.012

[7]   Yüksel, A., Akay, A., Gundogan, R., Reis. M. and Cetiner, M. (2008), Application of GeoWEPP for Determining Sediment Yield and Runoff in the Orcan Creek Watershed in Kahramanmaras, Turkey. Sensors, 8, 1222-1236.
http://dx.doi.org/10.3390/s8021222

[8]   Kim, J.G., Park, Y., Yoo, D., Kim, N., Engel, B. and Kim, S. (2008) Development of a SWAT ArcView GIS Patch for Accurate Analysis of Soil Erosion and Sediment Yield at Steep Sloping Watershed. American Society of Agricultural and Biological Engineering. Annual International Meeting, 9, 5282-5287.

[9]   Ashagre, B. (2009) SWAT to Identify Watershed Management Option: (Anjeni Watershed, Blue Nile Basin, Ethiopia), Master Thesis. Cornell University, New York.

[10]   Santos, I.D., Andriolo, M., Gibertoni, R. and Kobiyama, M. (2010) Use of the SWAT Model to Evaluate the Impact of Different Land Use Scenarios on Discharge and Sediment Transport in the Apucaraninha River Watershed, Southern Brazil. International Association of Hydrological Science, 337, 322-328.

[11]   Doughlas-Mankin, K.R., Srinivasan. R. and Arnold, J. (2010) Soil and Water Assessment Tool (SWAT) Model: Current Development and Application. Transactions of the ASABE, 53, 1423-1431.
http://dx.doi.org/10.13031/2013.34915

[12]   Jain, M., Mishra, S. and Shah, R. (2010) Estimation of Sediment Yield and areas Vulnerable to Soil Erosion and Deposition in a Himalayan Watershed Using GIS. Current Science. 98, 213-221.

[13]   Betrie, G.D., Mohamed, Y.A., van Griensven, A. and Srinivasan, R. (2011) Sediment Management Modelling in the Blue Nile Basin Using SWAT Model. Hydrology and Earth System Science, 15, 807-818.
http://dx.doi.org/10.5194/hess-15-807-2011

[14]   Mohammad, E., Al-Ansari, N. and Knutsson, S. (2013) Sediment Delivery From Right Bank Valleys to Mosul Reservoir, Iraq. Journal of Ecology and Environmental Science, 3, 50-53.

[15]   Shawul, A.A., Alamirew, T. and Dinka, M.O. (2013) Calibration and Validation of SWAT Model and Estimation of Water Balance Components of Shaya Mountainous Watershed, Southeastern Ethiopia. Hydroogy and Earth System Sciences, 10, 13955-13978.
http://dx.doi.org/10.5194/hessd-10-13955-2013

[16]   Shen, Z.Y., Gong, Y.W., Hong, Q., Li, Y.H., Liu R.M. and Xu, L. (2009) A Comparison of WEPP and SWAT for Modeling Soil Erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area. Agricultural Water Management, 96, 1435-1442.
http://dx.doi.org/10.1016/j.agwat.2009.04.017

[17]   Afshar, A.A. and Hassanzadeh, Y. (2015) A Comparison of WEPP and SWAT for Modeling Soil Erosion of Torogh Watershed in Khorasan Razavi Province. 10th International Congress on Civil Engineering, Tabriz, 5-7 May 2015.

[18]   Engda, T. (2009) Modeling Rainfall, Runoff and Soil Loss Relationships in the Northeastern Highlands of Ethiopia, Audit Tide Watershed. Master Thesis, Cornell University, Cornell.

[19]   Nangia, V., Wymar. P. and Klang, J. (2010) Evaluation of a GIS-Based Watershed Modeling Approach for Sediment Transport. International Journal of Agricultural and Biological Engineering, 3, 1-11.

[20]   Mustafa, Y. and Noori, M. (2013) Satellite Remote Sensing and Geographic Information Systems (GIS) to Assess Changes in the Water Level in the Duhok Dam. International Journal of Water Resources and Environmental Engineering, 5, 251-259.

[21]   Issazadeh, L. and Govay, M. (2014) Reservoir Sediment Prediction in Duhok Dam Using Artificial Neural Network and Conventional Methods. Indian Journal of Fundamental and Applied Life Sciences, 4, 441-446.

[22]   Sulaiman, A. (2010) Estimating of Annual Sediments of Duhok Dam By Using River Turbidity Water Samples. Journal of Duhok University Agricultural and Veterinary Science, 13, 82-89.

[23]   Mohammed, R. (2010) The Impact of the Man Activity in Duhok Dam Watershed on the Future of Duhok Dam Lake North-Iraq. 1st International Applied Geological Congress, Department of Geology, Islamic Azad University-Mashad Branch, Iran, 26-28 April 2010.

[24]   Mohammed, J. (2013) Land Use and Cover Change Assessment Using Remote Sensing and GIS: Dohuk City, Kurdistan, Iraq. International Journal of Geomatic and Geosciences, 3, 552-569.

[25]   Al-Ansari, N.A. (1998) Water Resources in the Arab Countries: Problems and Possible Solutions. The International Conference on World Water Resources at the Beginning of the 21st Century, Water: A Looming Crisis? Paris, 3-6 June 1998, 367-376.

[26]   Al-Ansari, N.A. and Knutsson, S. (2011) Toward Prudent Management of Water Resources in Iraq. Journal of Advance Science and Engineering Research, 1, 53-67.

[27]   Al-Ansari, N.A. (2013) Management of Water Resources in Iraq: Perspectives and Prognoses. Journal of Engineering, 5, 667-684.
http://dx.doi.org/10.4236/eng.2013.58080

[28]   Al-Ansari, N.A., Ali, A. and Knutsson, S. (2014) Present Conditions and Future Challenges of Water Resources Problems in Iraq. Journal of Water Resources and Protection, 6, 1066-1098.
http://dx.doi.org/10.4236/jwarp.2014.612102

[29]   Al-Ansari, N.A., Ali, A. and Knutsson, S. (2015) Iraq Water Resources Planning: Perspectives and Prognoses. 13th International Conference on Civil and Construction Engineering (ICCCE), Jeddah, 26-27 January 2015, 2097-2108.

[30]   Buringh, P. (1960) Soils and Soil Conditions in Iraq. Republic of Iraq, Ministry of Agriculture, Directorate of Agricultural Research and Projects Soils, 322.

[31]   Arnold, J.G., Srinivasan, R., Muttiah, R. and. Williams, J. (1998) Large Area Hydrologic Modeling and Assessment Part I: Model Development. Journal of American Water Resources Association, 34, 73-89.
http://dx.doi.org/10.1111/j.1752-1688.1998.tb05961.x

[32]   Neitsch, S., Arnold, J., Kiniry, J. and Williams, J. (2009) Soil and Water Assessment Tool Theoretical Documentation Version. Blackland Research Center-Texas SA TR, 406.

[33]   Flanagan, D.C., Gilley, J.E. and Franti, T.G. (2007) Water Erosion Prediction Project (WEPP): Development History, Model Capabilities, and Future Enhancements. Transactions of American Society of Agricultural and Biological Engineers, 50, 1603-1612.
http://dx.doi.org/10.13031/2013.23968

 
 
Top