[1] Hyung, S.S., et al. (2009) Surface Modification of Rigid Gas Permeable Contact Lens Treated by Using a Low-Temperature Plasma in Air. Journal of the Korean Physical Society, 55, 2436-2440.
http://dx.doi.org/10.3938/jkps.55.2436
[2] Wang, Y., et al. (2013) Plasma Surface Modification of Rigid Contact Lenses Decreases Bacterial Adhesion. Eye & Contact Lens: Science & Clinical Practice, 39, 376-380.
http://dx.doi.org/10.1097/ICL.0b013e31829e8f73
[3] Bhatia, S., Goldberg, E.P. and Enns, J.B. (1997) Examination of Contact Lens Surfaces by Atomic Force Microscope. CLAO Journal, 23, 264-269.
[4] Giraldez, M.J., Serra, C., Lira, M., et al. (2010) Soft Contact Lens Surface Profile by Atomic Force Microscopy. Optometry and Vision Science, 87, 475-481.
http://dx.doi.org/10.1097/OPX.0b013e3181e170c5
[5] Guryča, V., Hobzová, R., et al. (2007) Surface Morphology of Contact Lenses Probed with Microscopy Techniques. Contact Lens & Anterior Eye, 30, 215-222.
http://dx.doi.org/10.1016/j.clae.2007.02.010
[6] Srinivasan, R. and Braren, B. (1989) Ultraviolet Laser Ablation of Organic Polymers. Chemical Review, 89, 1303-1308.
http://dx.doi.org/10.1021/cr00096a003
[7] Rabek, J.F. (1996) Photodegradation of Polymer. Springer-Verlag, Heidelberg.
http://dx.doi.org/10.1007/978-3-642-80090-0
[8] Rubahan, H.G. (1999) Laser Applications in Surface Science and Technology. Wiley, New York.
[9] Zhang, Z., Hu, X. and Luo, Z. (1996) Wavelength Sensitivity of Photo-Oxidation of Polypropylene. Polymer Degradation and Stability, 51, 93-97.
http://dx.doi.org/10.1016/0141-3910(95)00210-3
[10] Torikai, A. and Hasegawa, H. (1998) Wavelength Effect on the Accelerated Photodegradation of Polymethylmethacrylate. Polymer Degradation and Stability, 61, 361-364.
http://dx.doi.org/10.1016/S0141-3910(97)00119-5
[11] Gesenhues, U. (2000) Influence of Titanium Dioxide Pigments on the Photodegradation of Poly(vinyl chloride). Polymer Degradation and Stability, 68, 185-196.
http://dx.doi.org/10.1016/S0141-3910(99)00184-6
[12] Geretovsky, Z., Hopp, B., Bertoti, I. and Boyd, I.W. (2002) Photodegradation of Polycarbonate under Narrow Band Irradiation at 172 nm. Applied Surface Science, 186, 85-90.
http://dx.doi.org/10.1016/S0169-4332(01)00615-8
[13] Lippert, T. and Dickinson, J.T. (2003) Chemical and Spectroscopic Aspects of Polymer Ablation: Special Features and Novel Directions. Chemical Review, 103, 453-486.
http://dx.doi.org/10.1021/cr010460q
[14] Panchenko, A.N., Shulepov, M.A., Tel’minov, A.E., Zakharov, L.A., Paletsky, A.A. and Bulgakova, N.M. (2011) Pulsed IR Laser Ablation of Organic Polymers in Air: Shielding Effects and Plasma Pipe Formation. Journal of Physics D: Applied Physics, 44, Article ID: 385201.
http://dx.doi.org/10.1088/0022-3727/44/38/385201
[15] Wee, S.W. and Park, S.M. (2001) Laser Ablation of Poly(methyl methacrylate) at 266 nm. Bulletin of the Korean Chemical Society, 22, 914-916.
[16] Dorronsoro, C., Siegel, J., Remon, L. and Marcos, S. (2008) Suitability of Filofocon A and PMMA for Experimental Models in Excimer Laser Ablation Refractive Surgery. Optics Express, 16, 20955-20967.
http://dx.doi.org/10.1364/OE.16.020955
[17] Berns, M.W., Chao, L., Giebel, A.W., Liaw, L.H., Andrews, J. and VerSteeg, B. (1999) Human Corneal Ablation Threshold Using the 193-nm ArF Excimer Laser. Investigative Ophthalmology & Visual Science, 40, 826-830.
[18] Spyratou, E., Asproudis, I., Tsoutsi, D., Bacharis, C., Moutsouris, K., Makropoulou, M. and Serafetinides, A.A. (2010) UV Laser Ablation of Intraocular Lenses: SEM and AFM Microscopy Examination of the Biomaterial Surface. Applied Surface Science, 256, 2539-2545.
http://dx.doi.org/10.1016/j.apsusc.2009.10.101
[19] Nakagawa, T., Maeda, N., Cekic, O., Fujikado, T., Tano, Y., Murakami, A., et al. (2008) Corneal Ablation with New 193 nm Solid-State Laser: Preliminary Experiments. Journal of Cataract Refractive Surgery, 34, 1019-1023.
http://dx.doi.org/10.1016/j.jcrs.2008.02.034
[20] Wisniewski, M., Sionkowska, A., Kaczmarek, H., Skopinska, J., Lazare, S. and Tokarev, V. (2006) The Influence of KrF Excimer Laser Irradiation on the Surface of Collagen and Collagen/PVP Films. International Journal of Photoenergy, 2006, Article ID: 35126.
[21] Jaleh, B., Parvin, P., Sheikh, N., Zamanipour, Z. and Sajad, B. (2007) Hydrophilicity and Morphological Investigation of Polycarbonate Irradiated by ArF Excimer Laser. Nuclear Instruments and Methods in Physics Research Section B, 265, 330-333.
http://dx.doi.org/10.1016/j.nimb.2007.08.067
[22] Kowal, A. (2005) Application of STM and AFM Techniques for the Investigation of Corrosion Processes and Materials Protection. Materials Protection, 46, 44-46.
[23] Saffar, A.P., Jaleh, B., Parvin, P., Wanichapichart, P. and Farshchi-Tabrizi, M. (2014) Surface Modification and Dielectric Response Investigation of Cellulose Acetate Membrane Treated by ArF Excimer Laser. Open Access Library Journal, 1, e488.
[24] Tsilimbaris, M.K., Lesniewska, E., Lydataki, S., Le Grimellec, C., Goudonnet, J.P. and Pallikaris, I.G. (2000) The Use of Atomic Force Microscopy for the Observation of Corneal Epithelium Surface. Investigative Ophthalmology & Visual Science, 41, 680-686.