Back
 MSA  Vol.7 No.7 , July 2016
Dynamic Mechanical and Thermal Behavior Analysis of Composites Based on Polypropylene Recycled with Vegetal Leaves
Abstract: Thermal properties, as well as the dynamic mechanical behavior of recycled polypropylene composites with vegetal leaves contents, were studied by thermal analysis techniques: TG/DTG, DTA, and DMA. Composites made of polypropylene recycled with 1%, 5%, 10%, and 15% ww?1 vegetal leaves were prepared using the melt blending technique. The results revealed that the viscoelastic properties were influenced by fiber content; however, the glass transition temperature (Tg) of the composite did not show significant changes to the fiber content. In the end, the composite with 5% of palm leaves and PP recycled presented the most promising results since this one kept the solid characteristic on the dynamic mechanical properties. This work presents an environmental friendly alternative to manage natural waste, also being a form of reducing polymeric materials waste.
Cite this paper: Mothé, C. , Monteiro, D. and Mothé, M. (2016) Dynamic Mechanical and Thermal Behavior Analysis of Composites Based on Polypropylene Recycled with Vegetal Leaves. Materials Sciences and Applications, 7, 349-357. doi: 10.4236/msa.2016.77031.
References

[1]   Wielage, B., Lampke, Th., Utschick, H. and Soergel, F. (2003) Processing of Natural-Fibre Reinforced Polymers and the Resulting Dynamic-Mechanical Properties. Journal of Materials Processing Technology, 139, 140-146.
http://dx.doi.org/10.1016/S0924-0136(03)00195-X

[2]   Karaduman, Y., Sayeed, M.M.A., Onal, L. and Rawal, A. (2014) Viscoelastic Properties of Surface Modified Jute Fiber/Polypropylene Nonwoven Composites. Composites Part B: Engineering, 67, 111-118.
http://dx.doi.org/10.1016/j.compositesb.2014.06.019

[3]   Herrera-Franco, P.J. and Valadez-González, A. (2004) Mechanical Properties of Continuous Natural Fibre-Reinforced Polymer Composites. Composites Part A: Applied Science and Manufacturing, 35, 339-345.
http://dx.doi.org/10.1016/j.compositesa.2003.09.012

[4]   Cassu, S.N. and Felisberti, M.I. (2005) Comportamento dinamico-mecanico e relaxacoes em polímeros e blendas poliméricas. Química Nova [Online], 28, 255-263.
http://dx.doi.org/10.1590/S0100-40422005000200017

[5]   Yousif, B. and El-Tayeb, N. (2007) Tribological Evaluations of Polyester Composites Considering Three Orientations of CSM Glass Fibres Using BOR Machine. Applied Composite Materials, 14, 105-116.
http://dx.doi.org/10.1007/s10443-007-9034-2

[6]   Al-Oqla, F.M. and Sapuam, S.M. (2014) Natural Fiber Reinforced Polymer Composites in Industrial Applications: Feasibility of Date Palm Fibers for Sustainable Automotive Industry. Journal of Cleaner Production, 66, 347-354.
http://dx.doi.org/10.1016/j.jclepro.2013.10.050

[7]   Ashori, A. and Nourbakhsh, A. (2009) Characteristics of Wood-Fiber Plastic Composites Made of Recycled Materials. Waste Management, 29, 1291-1295.
http://dx.doi.org/10.1016/j.wasman.2008.09.012

[8]   Stokke, D.D., Wu, Q. and Han, G. (2014) Introduction to Wood and Natural Fiber Composites. John Wiley & Sons, UK, 649.

[9]   Marinelli, A.L., Monteiro, M.R., Ambrósio, J.D., Branciforti, M.C., Kobayashi, M. and Nobre, A.D. (2008) Desenvolvimento de Compósitos Poliméricos com Fibras Vegetais Naturais da Biodiversidade: Uma Contribuicao para a Sustentabilidade Amazonica. Polímeros, 18, 92-99.
http://dx.doi.org/10.1590/S0104-14282008000200005

[10]   Zampaloni, M., Pourboghrat, F., Yankovich, S.A., Rodgers, B.N., Moore, J., Drzal, L.T., Mohanty, A.K. and Misra, M. (2007) Kenaf Natural Fiber Reinforced Polypropylene Composites: A Discussion on Manufacturing Problems and Solutions. Composites Part A: Applied Science and Manufacturing, 38, 1569-1580.
http://dx.doi.org/10.1016/j.compositesa.2007.01.001

[11]   Dehghani, A., Madadi Ardekani, S., Al-Maadeed, M.A., Hassan, A. and Wahit, M.U. (2013) Mechanical and Thermal Properties of Date Palm Leaf Fiber Reinforced Recycled Poly(ethylene terephthalate) Composites. Materials & Design, 52, 841-848.
http://dx.doi.org/10.1016/j.matdes.2013.06.022

[12]   García-García, D., Carbonell, A., Samper, M.D., García-Sanoguera, D. and Balart, R. (2015) Green Composites Based on Polypropylene Matrix and Hydrophobized Spend Coffee Ground (SCG) Powder. Composites Part B: Engineering, 78, 256-265.
http://dx.doi.org/10.1016/j.compositesb.2015.03.080

[13]   Jeencham, R., Suppakarn, N. and Jarukumjorn, K. (2014) Effect of Flame Retardants on Flame Retardant, Mechanical, and Thermal Properties of Sisal Fiber/Polypropylene Composites. Composites Part B: Engineering, 56, 249-253.
http://dx.doi.org/10.1016/j.compositesb.2013.08.012

[14]   Kumar, D. and Boopathy, S.R. (2014) Mechanical and Thermal Properties of Horn Fibre Reinforced Polypropylene Composites. Procedia Engineering, 97, 648-659.
http://dx.doi.org/10.1016/j.proeng.2014.12.294

[15]   Essabir, H., Nekhlaoui, S., Malha, M., Bensalah, M.O., Arrakhiz, F.Z., Qaiss, A. and Bouhfid, R. (2013) Bio-Composites Based on Polypropylene Reinforced with Almond Shells Particles: Mechanical and Thermal Properties. Materials and Design, 51, 225-230.
http://dx.doi.org/10.1016/j.matdes.2013.04.031

[16]   Parparita, E., Darie, R.N., Popescu, C.M., Uddin, A.M. and Vasile, C. (2014) Structure-Morphology-Mechanical Properties Relationship of Some Polypropylene/Lignocellulosic Composites. Materials and Design, 56, 763-772.
http://dx.doi.org/10.1016/j.matdes.2013.12.033

[17]   Azwa, Z.N., Yousif, B.F., Manalo, A.C. and Karunasena, W. (2013) A Review on the Degradability of Polymeric Composites Based on Natural Fibres. Materials and Design, 47, 424-442.

[18]   Ray, D., Sarkar, B.K., Rana, A.K. and Bose, N.R. (2001) The Mechanical Properties of Vinylester Resin Matrix Composites Reinforced with Alkali-Treated Jute Fibers. Composites Part A: Applied Science and Manufacturing, 32, 119-127.
http://dx.doi.org/10.1016/S1359-835X(00)00101-9

[19]   Huda, M.S., Drzal, L.T., Mohanty, A.K. and Misra, M. (2008) Effect of Chemical Modifications of the Pineapple leaf FIBER Surfaces on the Interfacial and Mechanical Properties of Laminated Biocomposites. Composite Interfaces, 15, 169-191.
http://dx.doi.org/10.1163/156855408783810920

[20]   Goda, K., Sreekala, M.S., Gomes, A., Kaji, T. and Ohgi, J. (2006) Improvement of Plant Based Natural Fibers for Toughening Green Composites-Effect of Load Application during Mercerization of Ramie Fibers. Composites Part A: Applied Science and Manufacturing, 37, 2213-2220.
http://dx.doi.org/10.1016/j.compositesa.2005.12.014

[21]   Al Maadeed, M.A. and Khanam, P.N. (2014) Improvement of Ternary Recycled Polymer Blend Reinforced with Date Palm Fibre. Materials and Design, 60, 532-539.
http://dx.doi.org/10.1016/j.matdes.2014.04.033

[22]   Mothé, C.G. and Azevedo, A.D. (2009) Análise Térmica de Materiais. Artliber Editora, Sao Paulo, 324.

[23]   Mothé, C.G. and Araújo, C.R. (2000) Properties of Polyurethane Elastomers and Composites by Thermal Analysis. Thermochimica Acta, 357-358, 321-325.
http://dx.doi.org/10.1016/S0040-6031(00)00403-2

 
 
Top