ENG  Vol.3 No.8 , August 2011
A Study on Mechanical Properties of PMMA/Hydroxyapatite Nanocomposite
Abstract: This study is focused on the role of nano hydroxyapatite particles on the mechanical properties of PMMA/HA nanocomposites. In order to achieve a proper and homogeneous distribution of HA particles in the polymer matrix, mixer milling process was applied. Wear, compression and three-point bending tests were conducted. It was observed that wear rate decreased by increasing in HA content in both atmosphere and artificial saliva. The results of compression tests showed that the addition of 2.5 percent HA to PMMA promoted ultimate compressive strength, yield strength and modulus while caused to decrease elongation at break. Also it was elucidated that addition of HA more than 2.5 wt.% caused a decrease in both ultimate compressive strength and compression yield strength and an increase in elongation at break. The results of three-point bending tests on the PMMA cements containing 2.5 percent HA demonstrated the maximum bending strength value and modulus among all the HA containing formulations. However there was no direct proportionality between the results of bending tests and the HA content and the addition of HA to PMMA (up to 10 wt.%) did not change the bending properties significantly.
Cite this paper: nullS. Zebarjad, S. Sajjadi, T. Sdrabadi, S. Sajjadi, A. Yaghmaei and B. Naderi, "A Study on Mechanical Properties of PMMA/Hydroxyapatite Nanocomposite," Engineering, Vol. 3 No. 8, 2011, pp. 795-801. doi: 10.4236/eng.2011.38096.

[1]   S. Santavirta, M. Takagi, E. Gomez-Barren, J. Nevalainen, J. Lassus, J. Salo and Y. T. Konttinen, “Studies of Host Response to Orthopedic Implants and Biomaterials,” Journal of Long-Term Effects of Medical Implants, Vol. 9, 1999, pp. 67-76.

[2]   G. Lewis, “Properties of Acrylic Bone Cement: State of the Art Review,” Journal of Biomedical Materials Research, Vol. 38, No. 2, 1997, pp. 155-182. doi:10.1002/(SICI)1097-4636(199722)38:2<155::AID-JBM10>3.0.CO;2-C

[3]   E. J. Harper and W. Bonfield, “Tensile Characteristics of Ten Commercial, Acrylic Bone Cements,” Journal of Biomedical Materials Research, Vol. 53, No. 5, 2000, pp. 605-616. doi:10.1002/1097-4636(200009)53:5<605::AID-JBM22>3.0.CO;2-5

[4]   J. E. Barralet, T. Gaunt, A. J. Wright, I. R. Gibson and J. C. Knowles, “Effect of Porosity by Compaction on Com-pressive Strength and Microstructure of Calcium Phosphate Cement,” Journal of Biomedical Materials Research Part B, Applied Biomaterials, Vol. 63, No. 1, 2002, pp. 1-9. doi:10.1002/jbm.1074

[5]   G. Zambonin, S. Colucci, F. Can-tatore and M. Grano, “Response of Human Osteoblasts to Po-lymethylmetacrylate in Vitro,” Calcified Tissue International, Vol. 62, No. 4, 1998, pp. 362-365. doi:10.1007/s002239900445

[6]   G. Cunin, H. Boissonnet, H. Petite, C. Blanchat and G. Guillemin, “Experimental Vertebro-plasty Using Osteoconductive Granular Material,” Spine, Vol. 25, No. 9, 2000, pp. 1070-1076. doi:10.1097/00007632-200005010-00006

[7]   J. X. Lu, Z. W. Huang and P. Tropiano, “Human Biological Reactions at the Interface between Bone Tissue and Polymethylmethacrylate Cement,” Journal of Materials Science: Materials in Medicine, Vol. 13, No. 8, 2002, pp. 803-809. doi:10.1023/A:1016135410934

[8]   P. F. Heini, B. Walchli and U. Berlemann, “Percutaneous Transpedicular Vertebro-plasty with PMMA: Operative Technique and Early Results,” European Spine Journal, Vol. 9, No. 5, 2000, pp. 445-450. doi:10.1007/s005860000182

[9]   S. Shinzato, T. Nakamura, T. Kokubo and Y. Kitamura, “Bioactive Bone Cement: Effect of Silane Treatment on Mechanical Properties and Osteoconduc-tivity,” Journal of Biomedical Materials Research, Vol. 55, No. 3, 2001, pp. 277-284. doi:10.1002/1097-4636(20010605)55:3<277::AID-JBM1015>3.0.CO;2-5

[10]   W. R. Walsh, M. J. Svehla, J. Russell, M. Saito, T. Nakashimac, R. M. Gilliesa, W. Brucea and R. Hori, “Cemented Fixation with PMMA or Bis-GMA Resin Hy-droxyapatite Cement: Effect of Implant Surface Roughness,” Biomaterials, Vol. 25, No. 20, 2004, pp. 4929- 4934. doi:10.1016/j.biomaterials.2003.12.020

[11]   K. S. Bong, K. Y. Jick, Y. T. Lim nd A. P. Su, “The Characteristics of a Hy-droxyapatite-Chitosan-PMMA Bone Cement,” Biomaterials, Vol. 25, No. 26, 2004, pp. 5715-5723.

[12]   K. Serbetci, F. Korkusuz and N. Hasirci, “Thermal and Mechanical Properties of Hydroxyapatite Impregnated Acrylic Bone Cements,” Poly-mer Testing, Vol. 23, No. 2, 2004, pp. 145-155. doi:10.1016/S0142-9418(03)00073-4

[13]   S. Morita, K. Fu-ruya, K. Ishihara and N. Nakabayashi, “Performance of Adhe-sive Bone Cement Containing Hydroxyapatite Particles,” Bio-materials, Vol. 19, No. 17, 1998, pp. 1601-1606. doi:10.1016/S0142-9612(97)00120-8

[14]   T. W. Bauer and J. Schils, “The Pathology of Total Joint Arthroplasty.I. Mecha-nisms of Implant Fixation,” Skeletal Radiology, Vol. 28, No. 8, 1999, pp. 423-432. doi:10.1007/s002560050541

[15]   S. Shinzato, M. Kobayashi, W. F. Mousa, M. Kamimura, M. Neo, Y. Kitamura, T. Kokubo and T. Nakamura, “Bioactive Polymethyl Methacrylate-Based Bone Cement: Comparison of Glass Beads, Apatite- and Wol-lastonite-Containing Glassceramic, and Hydroxyapatite Fillers on Mechanical and Biological Properties,” Journal of Bio-medical Materials Research, Vol. 51, No. 2, 2000, pp. 258-272. doi:10.1002/(SICI)1097-4636(200008)51:2<258::AID-JBM15>3.0.CO;2-S

[16]   H. Itokawaa, T. Hiraideb, M. Moriyaa, M. Fujimotoa, G. Nagashimaa, R. Suzukia and T. Fujimoto, “A 12 Month in Vivo Study on the Response of Bone to a Hydroxya-patite Polymethylmethacrylate Cranioplasty Composite,” Bio-materials, Vol. 28, No. 3, 2007, pp. 4922-4927. doi:10.1016/j.biomaterials.2007.08.001

[17]   M. J. Dalby, L. Di Silvio, E. J. Harper and W. Bonfield, “Initial Interaction of Osteoblasts with the Surface of Hydroxyapa-tite-Poly(Methylmethacrylate) Cement,” Biomaterials, Vol. 22, No. 13, 2001, pp. 1739-1747. doi:10.1016/S0142-9612(00)00334-3

[18]   M. J. Dalby, S. L. Di, E. J. Harper and W. Bonfield, “Increasing Hydroxyapatite Incorporation into Poly (Methylmethacrylate) Cement In-creases Osteoblast Adhesion and Response,” Biomaterials, Vol. 23, No. 2, 2002, pp. 569-576. doi:10.1016/S0142-9612(01)00139-9

[19]   T. Saito, Y. Kin and T. Koshino, “Osteogenic Response of Hydroxyapatite Cement Implanted into the Femur of Rats with Experimentally Induced Osteoporosis,” Biomaterials, Vol. 23, No. 13, 2002, pp. 2711-2716. doi:10.1016/S0142-9612(02)00003-0

[20]   R. D. Welch, B. H. Berry, K. Crawford, H. Zhang, M. Zobitz, D. Bronson and S. Krishnan, “Subchondral Defects in Caprine Femora Aug-mented with in Situ Setting Hydroxyapatite Cement, Poly-methylmethacrylate, or Autogenous Bone Graft: Biomechani-cal and Histomorphological Analysis after Two-Years,” Jour-nal of Orthopaedic Research, Vol. 20, No. 3, 2002, pp. 464-472. doi:10.1016/S0736-0266(01)00124-3

[21]   K. S. Erbetc, F. Korkusuz and N. Has?rc?, “Mechanical and Thermal Properties of Hydroxyapatite-Impregnated Bone Cement,” Turkish Jour-nal of Medical Sciences, Vol. 30, No. 6, 2000, pp. 543-549.

[22]   S. Y. Kwon, Y. S. Kim, Y. K. Woo, S. S. Kim and J. B. Park, “Hydroxyapatite Impregnated Bone Cement: In Vitro and in Vivo Studies,” Bio-Medical Materials and Engi-neering, Vol. 7, No. 2, 1997, pp. 129-140.

[23]   C. I. Vallo, P. E. Montemartini and M. A. Fanovich, “Polymethylmethacry-late-Based Bone Cement Modified with Hydroxyapatite,” Journal of Biomedical Materials Research Part B, Applied Biomaterials, Vol. 48, No. 2, 1999, pp. 150-158. doi:10.1002/(SICI)1097-4636(1999)48:2<150::AID-JBM9>3.0.CO;2-D

[24]   K. Ishihara, H. Arai and N. Nakabayashi, “Ad-hesive Bone Cement Containing Hydroxyapatite Particle as Bone Compatible Filler,” Journal of Biomedical Materials Research, Vol. 26, No. 8, 1992, pp. 937-945. doi:10.1002/jbm.820260708

[25]   M. M. Amr, A. V. Winnarda, P. L. Winnarda, J. J. Lannuttib and R. R. Seghi, “Enhanced Osteoblast Response to a Polymethylmethacry-late-Hydrox-Yapatite Composite,” Biomaterials, Vol. 23, No. 1, 2002, pp. 133-144. doi:10.1016/S0142-9612(01)00088-6

[26]   M. Wang, R. Jo-seph and W. Bonfield, “Hydroxyapatite- polyethylene Com-posites for Bone Substitution: Effects of Ceramic Particle Size and Morphology,” Biomaterials, Vol. 19, No. 24, 1998, pp. 2357-2366. doi:10.1016/S0142-9612(98)00154-9

[27]   R. K. Roeder, M. M. Sproul and C. H. Turner, “Hydroxyapatite Whiskers Provide Improved Mechanical Properties in Reinforced Polymer Com-posites,” Journal of Biomedical Materials Research Part A, Vol. 67A, No. 3, 2003, pp. 801-812. doi:10.1002/jbm.a.10140

[28]   J. M. Meyer and J. N. Nally, “Influence of Artificial Salivas on the Corrosion of Dental Al-loys,” Journal of Dental Research, Vol. 54, 1975, pp. 678-681.

[29]   X. Q. Hu, P. M. Marquis and A. C. Shortall, “Two Body in Vitro Wear Study of Some Current Dental Composites and Amalgam,” Journal of Prosthetic Dentistry, Vol. 82, No. 2, 1999, pp. 214-220. doi:10.1016/S0022-3913(99)70159-9

[30]   K. Serbetci, F. Korkusuz and N. Hasirci, “Thermal and Mechanical Properties of Hydroxyapatite Impregnated Acrylic Bone Cements,” Poly-mer Testing, Vol. 23, No. 2, 2004, pp. 145-155. doi:10.1016/S0142-9418(03)00073-4

[31]   A. Dasari, Z. Z. Yu and Y. W. Mai, “Fundamental Aspect and Recent Progress on Wear/Scratch Damage in Polymer Nanocomposites,” Materials Science and Engineering: Reports, Vol. 63, No. 2, 2009, pp. 31-80. doi:10.1016/j.mser.2008.10.001

[32]   A. Dasari, “On Toughen-ing and Wear/Scratch Damage in Polymer Nanocomposites,” PhD Thesis, the University of Sydney, Sydney, 2007.

[33]   Q. B. Guo, M. Z. Rong, G. L. Jia, K. T. Lau and M. Q. Zhang, “Sliding Wear Performance of Nano-SiO2/Short Carbon Fi-ber/Epoxy Hybrid Composites,” Wear, Vol. 266, No. 7-8, 2009, pp. 658-665. doi:10.1016/j.wear.2008.08.005

[34]   L. H. Mair, “Wear in the Mouth: The Tribological Dimension,” M. Addy, Martin Dunitz Ltd., London, 2000, pp. 181-188.