Back
 AM  Vol.7 No.11 , July 2016
A Remarkable Chord Iterative Method for Roots of Uncertain Multiplicity
Abstract: In this note we at first briefly review iterative methods for effectively approaching a root of an unknown multiplicity. We describe a first order, then a second order estimate for the multiplicity index m of the approached root. Next we present a second order, two-step method for iteratively nearing a root of an unknown multiplicity. Subsequently, we introduce a novel chord, or a two- step method, not requiring beforehand knowledge of the multiplicity index m of the sought root, nor requiring higher order derivatives of the equilibrium function, which is quadratically convergent for any , and then reverts to superlinear.
Cite this paper: Fried, I. (2016) A Remarkable Chord Iterative Method for Roots of Uncertain Multiplicity. Applied Mathematics, 7, 1207-1214. doi: 10.4236/am.2016.711106.
References

[1]   Householder, A.S. (1970) The Numerical Treatment of a Single Nonlinear Equation. McGraw-Hill, New-York.

[2]   Traub, J.F. (1977) Iterative Methods for the Solution of Equations. Chelsea Publishing Company, New York.

[3]   Ostrowski, A. (1960) Solution of Equations and Systems of Equations. Academic Press, New York.

[4]   Hansen, E. and Patrick, M.A. (1977) Family of Root Finding Methods. Numerische Mathematik, 27, 257-269.
http://dx.doi.org/10.1007/BF01396176

[5]   Petkovic, M.S., Petkovic, L.D. and Dzunic, J. (2010) Accelerating Generators of Iterative Methods for Finding Multiple Roots of Nonlinear Equations. Computers and Mathematics with Applications, 59, 2784-2793.
http://dx.doi.org/10.1016/j.camwa.2010.01.048

[6]   Neta, B. and Johnson, A.N. (2008) High-Order Nonlinear Solver for Multiple Roots. Computers and Mathematics with Application, 55, 2012-2017.
http://dx.doi.org/10.1016/j.camwa.2007.09.001

[7]   Fried, I. (2013) High-Order Iterative Bracketing Methods. International Journal for Numerical Methods in Engineering, 94, 708-714.
http://dx.doi.org/10.1002/nme.4467

[8]   King, R.F. (1977) A Secant Method for Multiple Roots. BIT, 17, 321-328.
http://dx.doi.org/10.1007/BF01932152

[9]   Lagouanelle, J.L. (1966) Sur Une Metode de Calcul de l’Ordre de Multiplicite des Zeros d’Un Polynome. Comptes Rendus de l'Académie des Sciences, 262, 626-627.

[10]   Rall, L.B. (1966) Convergence of the Newton Process to Multiple Solutions. Numerische Mathematik, 9, 23-37.
http://dx.doi.org/10.1007/BF02165226

[11]   Soleymani, F. (2012) Optimized Steffensen-Type Methods with Eighth-Order Convergence and High Efficiency Index. International Journal of Mathematics and Mathematical Sciences, 2012, 1-18.
http://dx.doi.org/10.1155/2012/932420

[12]   Sharma, J.R. (2005) A Composite Third Order Newton-Steffensen Method for Solving Nonlinear Equations. Applied Mathematics and Computation, 169, 242-246.
http://dx.doi.org/10.1016/j.amc.2004.10.040

[13]   Esser, H. (1975) Eine Stets Quadratisch Konvergente Modifikation des Steffensen Verfahrens. Computing, 14, 367-369.
http://dx.doi.org/10.1007/BF02253547

[14]   Dong, C. (1987) A Family of Multipoint Iterative Functions for Finding Multiple Roots of Equations. International Journal of Computer Mathematics, 21, 363-367.
http://dx.doi.org/10.1080/00207168708803576

[15]   Thukral, R. (2013) Introduction to Higher-Order Iterative Methods for Finding Multiple Roots of Nonlinear Equations. Journal of Mathematics, 2013, 1-3.
http://dx.doi.org/10.1155/2013/404635

 
 
Top