ABB  Vol.7 No.7 , July 2016
Lessons from microRNA Sequencing Using Illumina Technology
Abstract: The numbers of reads generated by second-generation sequencing technologies permit to establish in a single sequencing lane multiple microRNA (miRNA) expression profiles from small RNA-derived cDNA libraries tagged by barcodes consisting of few bases. Multiplex sequencing allows sample size expansion and thus the statistical reliability of generated data. This allows the detection of discrete changes in miRNA expression levels that occur at the onset of cellular processes. With the development of the “by-amplification” strategy, tagging cDNA libraries is no more a source of technical variability. However, other specific features should be kept in mind when designing experiments aimed at profiling miRNA expression using Illumina sequencing technology, the most important being the substantial distortion between miRNA expression in sequencing data and the true miRNA abundancy. miRNAs of low expression in profiles may correspond to abundant miRNAs in samples and vice versa. We report here data obtained from rat cerebellum and liver that illustrate 1) the high 3’ adaptor dependency of miRNA expression profiles, 2) the impact of sample size when working with moderate (3 - 4 fold) changes of miRNA expression and 3) the impact of the statistical tools used to identify differentially expressed miRNAs.
Cite this paper: Baroin-Tourancheau, A. , Benigni, X. , Doubi-Kadmiri, S. , Taouis, M. and Amar, L. (2016) Lessons from microRNA Sequencing Using Illumina Technology. Advances in Bioscience and Biotechnology, 7, 319-328. doi: 10.4236/abb.2016.77030.

[1]   Mardis, E.R. (2008) Next-Generation DNA Sequencing Methods. Annual Review of Genomics and Human Genetics, 9, 387-402.

[2]   Shendure, J. and Ji, H. (2008) Next-Generation DNA Sequencing. Nature Biotechnology, 26, 1135-1145.

[3]   Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: A Revolutionary Tool for Transcriptomics. Nature Reviews Genetics, 10, 57-63.

[4]   Bartel, D.P. (2009) MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136, 215-233.

[5]   Kozomara, A. and Griffiths-Jones, S. (2011) miRBase: Integrating MicroRNA Annotation and Deep-Sequencing Data. Nucleic Acids Research, 39, D152-D157.

[6]   Vigneault, F., Sismour, A.M. and Church, G.M. (2008) Efficient MicroRNA Capture and Bar-Coding via Enzymatic Oligonucleotide Adenylation. Nature Methods, 5, 777-779.

[7]   Alon, S., Vigneault, F., Eminaga, S., Christodoulou, D.C., Seidman, J.G., Church, G.M. and Eisenberg E. (2011) Barcoding Bias in High-Throughput Multiplex Sequencing of miRNA. Genome Research, 21, 1506-1511.

[8]   Jayaprakash, A.D., Jabado, O., Brown, B.D. and Sachidanandam, R. (2011) Identification and Remediation of Biases in the Activity of RNA Ligases in Small-RNA Deep Sequencing. Nucleic Acids Research, 39, 1-12.

[9]   Hafner, M., Renwick, N., Brown, M., Mihailovic, A., Holoch, D. Lin, C., Pena, J.T., Nusbaum, J.D., Morozov, P., Ludwig, J., Ojo, T., Luo, S., Schroth, G. and Tuschl, T. (2011) RNA-Ligase-Dependent Biases in miRNA Representation in Deep-Sequenced Small RNA cDNA Libraries. RNA, 17, 1697-1712.

[10]   Hafner, M., Renwick, N., Farazi, T.A., Mihailovic, A., Pena, J.T. and Tuschl, T. (2012) Barcoded cDNA Library Preparation for Small RNA Profiling by Next-Generation Sequencing. Methods, 58, 164-170.

[11]   Van Nieuwerburgh, F., Soetaert, S., Posshivalova, K., Wang, E.A.L., Schaffer, L., Deforce, D., Salomon, D.R., Head, S.R. and Ordoukhanian, P. (2011) Quantitative Bias in Illumina TruSeq and a Novel Post Amplification Barcoding Strategy for Multiplexed DNA and Small RNA Deep Sequencing. PLoS ONE, 6, e26969.

[12]   Linsen, S.E.V., de Witt, E., Janssens, G., Heater, S., Chapman, L., Parkin, R.K., Fritz, B., Wyman, S.K., de Bruijn, E., Voest, E.E., Kuersten, S., Tewari, M. and Cuppen, E. (2009) Limitations and Possibilities of Small RNA Digital Gene Expression Profiling. Nature Methods, 6, 474-476.

[13]   Hollander, J.A., Im, H.I., Amelio, A., Kocerha, J., Bali, P., Lu, Q., Willoughby, D., Wahlestedt, C., Conkright, M.D. and Kenny, P.J. (2010) Striatal MicroRNA Controls Cocaine Intake through CREB Signalling. Nature, 466, 197-202.

[14]   Hackenberg, M., Rodriguez-Espeleta, N. and Aransay, A.M. (2011) miRanalyzer: An Update on the Detection and Analysis of MicroRNAs in High-Throughput Sequencing Experiments. Nucleic Acids Research, 39, W132-W138.

[15]   Rueda, A., Barturen, G., Lebron, R., Gomez-Martin, C., Alganza, A., Oliver, J.L. and Hackenberg, M. (2015) sRNAtoolbox: Integrated Collection of Small RNA Research Tools. Nucleic Acids Research, 43, W467-W473.

[16]   Anders, S. and Hubert, W. (2010) Differential Expression Analysis for Sequence Count Data. Genome Biology, 11, R106.

[17]   Sun, G., Wu, X., Wang, J., Li, H., Li, X. Gao, H., Rossi, J. and Yen, Y. (2011) A Bias-Reducing Strategy in Profiling Small RNAs Using Solexa. RNA, 17, 2256-2262.

[18]   Sorefan, K., Pais, H., Hall, A.E., Kozomara, A., Griffiths-Jones, S. Moulton, V. and Dalmay, T. (2012) Reducing Bias Ligation of Small RNAs in Libraries for Next Generation Sequencing. Silence, 3, 4.

[19]   Toedling, J., Servant, N., Ciaudo, C., Farinelli, L., Voinnet, O. Heard, E. and Barillot, E. (2012) Deep-Sequencing Protocols Influence the Results Obtained in Small-RNA Sequencing. PLoS ONE, 7, e32724.

[20]   Zhuang, F., Fuchs, R.T., Sun, Z., Zheng, Y. and Robb, G.B. (2012) Structural Bias in RNA Ligase-Mediated 3’Adapter Ligation. Nucleic Acids Research, 40, e54.

[21]   Liu, Y., Zhou, L. and White, K.P. (2014) RNA-Seq Differential Expression Studies: More Sequence or More Replication? Bioinformatics, 30, 301-304.

[22]   Amar, L., Benoit, C., Beaumont, G., Vacher, C.M., Crepin, D., Taouis, M. and Baroin-Tourancheau, A. (2012) MicroRNA Expression Profiling of Hypothalamic Arcuate and Paraventricular Nuclei from Single Rats Using Illumina Sequencing Technology. Journal of Neuroscience Methods, 209, 134-143.

[23]   Baroin-Tourancheau, A., Benigni, X., Benoit, C., Doubi-Kadmiri, S., Vacher, CM., Taouis, M. and Amar, L. (2014) Keys for MicroRNA Expression Profiling of Single Rat Hypothalamic Nuclei and Multiplex Sequencing Strategies. Experimental Physiology, 99, 72-77.

[24]   Doubi-Kadmiri, S., Benoit, B., Benigni, X., Beaumont, G., Vacher, C.-M., Taouis, M., Baroin-Tourancheau, A. and Amar, L. (2016) Substantial and Robust Changes in MicroRNA Transcriptome Support Postnatal Development of the Hypothalamus in Rat. Scientific Reports, 6, 24896.

[25]   Holm, S. (1979) A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics, 6, 65-70.

[26]   Benjamini, Y. and Hochberg, Y. (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B, 57, 289-300

[27]   Benjamini, Y. and Yekutieli, D. (2001) The Control of the False Discovery Rate in Multiple Testing. Annals of Statistics, 29, 1165-1188.

[28]   Krichevsky, A.M. (2007) MicroRNA Profiling from Dark Matter to White Matter, or Identifying New Players in Neurobiology. Scientific World Journal, 7, 155-166.

[29]   Linsen, S., Krichevsky, E.V., de Wit, E., de Bruijn, E. and Cuppen, E. (2010) Small RNA Expression and Strain Specificity in the Rat. BMC Genomics, 11, 249-260.

[30]   Freund, J., Brandmaier, A.M., Lewejohann, L., Kirste, I., Kritzler, M., Krüger, A., Sachser, N., Lindenberger, U. and Kempermann, G. (2013) Emergence of Individuality in Genetically Identical Mice. Science, 340, 756-759.