Back
 JTTs  Vol.6 No.4 , July 2016
Crash Frequency Analysis
Abstract: Modeling highway traffic crash frequency is an important approach for identifying high crash risk areas that can help transportation agencies allocate limited resources more efficiently, and find preventive measures. This paper applies a Poisson regression model, Negative Binomial regression model and then proposes an Artificial Neural Network model to analyze the 2008-2012 crash data for the Interstate I-90 in the State of Minnesota in the US. By comparing the prediction performance between these three models, this study demonstrates that the Neural Network is an effective alternative method for predicting highway crash frequency.
Cite this paper: Abdulhafedh, A. (2016) Crash Frequency Analysis. Journal of Transportation Technologies, 6, 169-180. doi: 10.4236/jtts.2016.64017.
References

[1]   Lao, Y., Wu, Y., Corey, J. and Wang, Y. (2011) Modeling Animal-Vehicle Collisions Using Diagonal Inflated Bivariate Poisson Regression. Accident Analysis and Prevention, 43, 220-227.
http://dx.doi.org/10.1016/j.aap.2010.08.013

[2]   Lord, D. and Mannering, F. (2010) The Statistical Analysis of Crash-Frequency Data: A Review and Assessment of Methodological Alternatives. Transportation Research Part A, 44, 291-305.
http://dx.doi.org/10.1016/j.tra.2010.02.001

[3]   Caliendo, C., Guida, M. and Parisi, A. (2007) A Crash-Prediction Model for Multilane Roads. Accident Analysis and Prevention, 39, 657-670.
http://dx.doi.org/10.1016/j.aap.2006.10.012

[4]   Park, E.-S. and Lord, D. (2007) Multivariate Poisson-Lognormal Models for Jointly Modeling Crash Frequency by Severity. Transportation Research Record, 2019, 1-6.
http://dx.doi.org/10.3141/2019-01

[5]   Ma, J., Kockelman, K.M. and Damien, P. (2008) A Multivariate Poisson-Lognormal Regression Model for Prediction of Crash Counts by Severity, Using Bayesian Methods. Accident Analysis and Prevention, 40, 964-975.
http://dx.doi.org/10.1016/j.aap.2007.11.002

[6]   El-Basyouny, K. and Sayed, T. (2009) Collision Prediction Models Using Multivariate Poisson-Lognormal Regression. Accident Analysis and Prevention, 41, 820-828.
http://dx.doi.org/10.1016/j.aap.2009.04.005

[7]   El-Basyouny, K. and Sayed, T. (2006) Comparison of Two Negative Binomial Regression Techniques in Developing Accident Prediction Models. Transportation Research Record, 1950, 9-16.
http://dx.doi.org/10.3141/1950-02

[8]   Kim, D.G., Lee, Y., Washington, S. and Choi, K. (2007) Modeling Crash Outcome Probabilities at Rural Intersections: Application of Hierarchical Binomial Logistic Models. Accident Analysis and Prevention, 39, 125-134.
http://dx.doi.org/10.1016/j.aap.2006.06.011

[9]   Lord, D. and Bonneson, J.A. (2007) Development of Accident Modification Factors for Rural Frontage Road Segments in Texas. Transportation Research Record, 2023, 20-27.
http://dx.doi.org/10.3141/2023-03

[10]   Malyshkina, N. and Mannering, F. (2010) Empirical Assessment of the Impact of Highwaydesign Exceptions on the Frequency and Severity of Vehicle Accidents. Accident Analysis and Prevention, 42, 131-139.
http://dx.doi.org/10.1016/j.aap.2009.07.013

[11]   Daniels, S., Brijs, T., Nuyts, E. and Wets, G. (2010) Explaining Variation in Safety Performance of Roundabouts. Accident Analysis and Prevention, 42, 292-402.
http://dx.doi.org/10.1016/j.aap.2009.08.019

[12]   Geedipally, S.R., Lord, D. and Dhavala, S.S. (2012) The Negative-Binomial Lindley Generalized Linear Model: Characteristics and Application Using Crash Data. Accident Analysis and Prevention, 45, 258-265.
http://dx.doi.org/10.1016/j.aap.2011.07.012

[13]   Oh, J., Washington, S.P. and Nam, D. (2006) Accident Prediction Model for Railway-Highway Interfaces. Accident Analysis and Prevention, 38, 346-356.
http://dx.doi.org/10.1016/j.aap.2005.10.004

[14]   Lord, D. (2006) Modeling Motor Vehicle Crashes Using Poisson-Gamma Models: Examining the Effects of Low Sample Mean Values and Small Sample Size on the Estimation of the Fixed Dispersion Parameter. Accident Analysis and Prevention, 38, 751-766.
http://dx.doi.org/10.1016/j.aap.2006.02.001

[15]   Lord, D. and Miranda-Moreno, L.F. (2008) Effects of Low Sample Mean Values and Small Sample Size on the Estimation of the Fixed Dispersion Parameter of Poisson-Gamma Models for Modeling Motor Vehicle Crashes: A Bayesian Perspective. Safety Science, 46, 751-770.
http://dx.doi.org/10.1016/j.ssci.2007.03.005

[16]   Aguero-Valverde, J. and Jovanis, P.P. (2008) Analysis of Road Crash Frequency with Spatial Models. Transportation Research Record, 2061, 55-63.
http://dx.doi.org/10.3141/2061-07

[17]   Lord, D., Washington, S.P. and Ivan, J.N. (2007) Further Notes on the Application of Zero Inflated Models in Highway Safety. Accident Analysis and Prevention, 39, 53-57.
http://dx.doi.org/10.1016/j.aap.2006.06.004

[18]   Kadane, J.B., Shmueli, G., Minka, T.P., Borle, S. and Boatwright, P. (2006) Conjugate Analysis of the Conway-Max- well-Poisson Distribution. Bayesian Analysis, 1, 363-374.
http://dx.doi.org/10.1214/06-BA113

[19]   Xie, Y. and Zhang, Y. (2008) Crash Frequency Analysis with Generalized Additive Models. Transportation Research Record, 2061, 39-45.
http://dx.doi.org/10.3141/2061-05

[20]   Li, X., Lord, D., Zhang, Y. and Xie, Y. (2009) Predicting Motor Vehicle Crashes Using Support Vector Machine Models. Accident Analysis and Prevention, 40, 1611-1618.
http://dx.doi.org/10.1016/j.aap.2008.04.010

[21]   Milton, J., Shankar, V. and Mannering, F. (2008) Highway Accident Severities and the Mixed Logit Model: An Exploratory Empirical Analysis. Accident Analysis and Prevention, 40, 260-266.
http://dx.doi.org/10.1016/j.aap.2007.06.006

[22]   Anastasopoulos, P.C. and Mannering, F. (2009) A Note on Modeling Vehicle Accident Frequencies with Random-Pa- rameters Count Models. Accident Analysis and Prevention, 41, 153-159.
http://dx.doi.org/10.1016/j.aap.2008.10.005

[23]   Washington, S.P., Karlaftis, M.G. and Mannering, F. (2010) Statistical and Econometric Methods for Transportation Data Analysis. 2nd Edition, Chapman Hall/CRC, Boca Raton.

[24]   Park, B.-J. and Lord, D. (2009) Application of Finite Mixture Models for Vehicle Crash Data Analysis. Accident Analysis and Prevention, 41, 683-691.
http://dx.doi.org/10.1016/j.aap.2009.03.007

[25]   Malyshkina, N.V., Mannering, F.L. and Tarko, A.P. (2009) Markov Switching Negative Binomial Models: An Application to Vehicle Accident Frequencies. Accident Analysis and Prevention, 41, 217-226.
http://dx.doi.org/10.1016/j.aap.2008.11.001

[26]   Chang, L.-Y. (2005) Analysis of Freeway Accident Frequencies: Negative Binomial Regression versus Artificial Neural Network. Safety Science, 43, 541-557.
http://dx.doi.org/10.1016/j.ssci.2005.04.004

[27]   Riviere, C., Lauret, P., Ramsamy, J.F.M. and Page, Y. (2006) A Bayesian Neural Network Approach to Estimating the Energy Equivalent Speed. Accident Analysis and Prevention, 38, 248-259.
http://dx.doi.org/10.1016/j.aap.2005.08.008

[28]   Xie, Y., Lord, D. and Zhang, Y. (2007) Predicting Motor Vehicle Collisions Using Bayesian Neural Networks: An Empirical Analysis. Accident Analysis and Prevention, 39, 922-933.
http://dx.doi.org/10.1016/j.aap.2006.12.014

[29]   Shively, T., Kockelman, K. and Damien, P. (2010) A Bayesian Semi-Parametric Model to Estimate Relationships between Crash Counts and Roadway Characteristics. Transportation Research Part B, 44, 699-715.
http://dx.doi.org/10.1016/j.trb.2009.12.019

 
 
Top