Back
 JBiSE  Vol.9 No.8 , July 2016
On Similarities and Differences of Invasive and Non-Invasive Electrical Brain Signals in Brain-Computer Interfacing
Abstract: We perceive that some Brain-Computer Interface (BCI) researchers believe in totally different origins of invasive and non-invasive electrical BCI signals. Based on available literature we argue, however, that although invasive and non-invasive BCI signals are different, the underlying origin of electrical BCIs signals is the same.
Cite this paper: Steyrl, D. , Kobler, R. and Müller-Putz, G. (2016) On Similarities and Differences of Invasive and Non-Invasive Electrical Brain Signals in Brain-Computer Interfacing. Journal of Biomedical Science and Engineering, 9, 393-398. doi: 10.4236/jbise.2016.98034.
References

[1]   Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G. and Vaughan T.M. (2002) Brain-Computer Interfaces for Communication and Control. Clinocal Neurophysiology, 113, 767-791.
http://dx.doi.org/10.1016/S1388-2457(02)00057-3

[2]   Millán, J.d.R., Rupp, R., Müller-Putz, G.R., Murray-Smith, R., Giugliemma, C., Tangermann, M., Vidaurre, C., Cincotti, F., Kübler, A., Leeb, R., Neuper, C., Müller, K.-R. and Mattia, D. (2010) Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges. Frontiers in Neuroscience, 4, 161.
http://dx.doi.org/10.3389/fnins.2010.00161

[3]   Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T.M., Pawelzik, H., Schalk, G., McFarland, D.J., Birbaumer, N. and Wolpaw, J.R. (2005) Patients with ALS Can Use Sensorimotor Rhythms to Operate a Brain-Computer Interface. Neurology, 64, 1775-1777.
http://dx.doi.org/10.1212/01.WNL.0000158616.43002.6D

[4]   Rupp, R., Rohm, M., Schneiders, M., Kreilinger, A. and Müller-Putz, G.R. (2015) Functional Rehabilitation of the Paralyzed Upper Extremity After Spinal Cord Injury by Noninvasive Hybrid Neuroprostheses. Proceedings of the IEEE, 103, 954-968.
http://dx.doi.org/10.1109/JPROC.2015.2395253

[5]   Müller-Putz, G.R., Brunner, C., Bauernfeind, G., Blefari, M.L., del R. Millan, J., Real, R., Kübler, A., Mattia, D., Ramsey, N., Blankertz, B., Reuderink, B., Birbaumer, N., Salomon, P., van Steensel, M., Soekader, S., Pichiorri, F., de Pobes, A., Schettini, F., Hohne, J., Miralles, F., Otal, B., Guger, C., Ortner, R., Poel, M., Nijholt, A. and Opisso, E. (2015) The Future of Brain/Neural Computer Interaction: Horizon 2020.
http://dx.doi.org/10.3217/978-3-85125-379-5

[6]   Zander, T.O. and Kothe, C. (2011) Towards Passive Brain-Computer Interfaces: Applying Brain-Computer Interface Technology to Human-Machine Systems in General. Journal of Neural Engineering, 8, 025005.
http://dx.doi.org/10.1088/1741-2560/8/2/025005

[7]   Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M., Dimitrov, D.F., et al. (2003) Learning to Control a Brain-Machine Interface for Reaching and Grasping by Primates. PLoS Biology, 1, E42.
http://dx.doi.org/10.1371/journal.pbio.0000042

[8]   Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D. and Donoghue, J.P. (2006) Neuronal Ensemble Control of Prosthetic Devices by a Human with Tetraplegia. Nature, 442, 164-171.
http://dx.doi.org/10.1038/nature04970

[9]   Hochberg, L.R., Bacher, D., Haddadin, S., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J., Liu, J., Cash, S.S., van der Smagt, P. and Donoghue, J.P. (2012) Reach and Grasp by People with Tetraplegia Using a Neurally Controlled Robotic Arm. Nature, 485, 372-375.
http://dx.doi.org/10.1038/nature11076

[10]   Wodlinger, B., Schwartz, A.B., Downey, J.E., Boninger, M.L., Collinger, J.L. and Tyler-Kabara, E.C. (2015) Ten- Dimensional Anthropomorphic Arm Control in a Human Brain-Machine Interface: Difficulties, Solutions, and Limitations. Journal of Neural Engineering, 12, 016011.
http://dx.doi.org/10.1088/1741-2560/12/1/016011

[11]   Blabe, C.H., Gilja, V., Chestek, C.A., Shenoy, K.V., Anderson, K.D. and Henderson, J.M. (2015) Assessment of Brain-Machine Interfaces from the Perspective of People with Paralysis. Journal of Neural Engineering, 12, 043002.
http://dx.doi.org/10.1088/1741-2560/12/4/043002

[12]   Collinger, J.L., Boninger, M.L., Bruns, T.M., Curley, K., Wang, W. and Weber, D.J. (2013) Functional Priorities, Assistive Technology, and Brain-Computer Interfaces after Spinal Cord Injury. Journal of Rehabilitation Research & Development, 50, 145-160.
http://dx.doi.org/10.1682/JRRD.2011.11.0213

[13]   Müller-Putz, G.R., del R. Millan, J., Schalk, G. and Müller, K.R. (2015) The Plurality of Human Brain-Computer Interfacing [Scanning the Issue]. Proceedings of the IEEE, 103, 868-870.
http://dx.doi.org/10.1109/JPROC.2015.2425835

[14]   David, O., Kilner, J.M. and Friston K.J. (2006) Mechanisms of Evoked and Induced Responses in MEG/EEG. Neuro- Image, 31, 1580-1591.
http://dx.doi.org/10.1016/j.neuroimage.2006.02.034

[15]   Botrel, L., Holz, E.M. and Kübler, A. (2015) Brain Painting V2: Evaluation of P300-Based Brain-Computer Interface for Creative Expression by an End-User Following the User-Centered Design. Brain-Computer Interfaces, 2, 135-149.
http://dx.doi.org/10.1080/2326263X.2015.1100038

[16]   Holz, E.M., Botrel, L., Kaufmann, T. and Kübler, A. (2015) Long-Term Independent Brain-Computer Interface Home Use Improves Quality of Life of a Patient in the Locked-In State: A Case Study. Archives of physical medicine and rehabilitation, 96, 16-26.
http://dx.doi.org/10.1016/j.apmr.2014.03.035

[17]   Holz, E.M., Botrel, L. and Kübler, A. (2015) Independent Home Use of Brain Painting Improves Quality of Life of Two Artists in the Locked-In State Diagnosed with Amyotrophic Lateral Sclerosis. Brain-Computer Interfaces, 2, 117-134.
http://dx.doi.org/10.1080/2326263X.2015.1100048

[18]   Kaufmann, T., Volker, S., Gunesch, L. and Kübler, A., (2012) Spelling Is Just a Click Away—A User-Centered Brain-Computer Interface Including Auto-Calibration and Predictive Text Entry. Frontiers in Neuroscience, 6, 72.
http://dx.doi.org/10.3389/fnins.2012.00072

[19]   Pfurtscheller, G. and Neuper, C. (2001) Motor Imagery and Direct Brain-Computer Communication. Proceedings of the IEEE, 89, 1123-1134.
http://dx.doi.org/10.1109/5.939829

[20]   Leeb, R., Perdikis, S., Tonin, L., Biasiucci, A., Tavella, M., Creatura, M., Molina, A., Al-Khodairy, A., Carlson, T. and Millán, J.D., (2013) Transferring Brain-Computer Interfaces beyond the Laboratory: Successful Application Control for Motor-Disabled Users. Artificial Intelligence in Medicine, 59, 121-132.
http://dx.doi.org/10.1016/j.artmed.2013.08.004

[21]   Buzsáki, G., Anastassiou, C.A. and Koch C. (2012) The Origin of Extracellular Fields and Currents—EEG, ECoG, LFP and Spikes. Nature Reviews Neuroscience, 13, 407-420.
http://dx.doi.org/10.1038/nrn3241

[22]   Einevoll, G.T., Kayser, C., Logothetis, N.K. and Panzeri, S. (2013) Modelling and Analysis of Local Field Potentials for Studying the Function of Cortical Circuits. Nature Reviews Neuroscience, 14, 770-785.
http://dx.doi.org/10.1038/nrn3599

[23]   Nunez, P.L. and Srinivasan, R. (2005) Electric Fields in the Brain. The Neurophysics of EEG, Oxford University Press, Oxford.

[24]   Grimnes. S. and Martinsen, O.G. (2014) Bioimpedance and Bioelectricity Basics. 3rd Edition, Elsevier, Amsterdam.

[25]   Bédard, C., Kroger, H. and Destexhe, A. (2004) Modeling Extracellular Field Potentials and the Frequency-Filtering Properties of Extracellular Space. Biophysical Journal, 86, 1829-1842.
http://dx.doi.org/10.1016/S0006-3495(04)74250-2

[26]   Logothetis, N.K., Kayser, C. and Oeltermann, A. (2007) In Vivo Measurement of Cortical Impedance Spectrum in Monkeys: Implications for Signal Propagation. Neuron, 55, 809-823.
http://dx.doi.org/10.1016/j.neuron.2007.07.027

[27]   Lindén, H., Tetzlaff, T., Potjans T.C., Pettersen, K.H., Grün, S., Diesmann, M. and Einevoll, G.T. (2001) Modeling the Spatial Reach of the LFP. Neuron, 72, 859-872.
http://dx.doi.org/10.1016/j.neuron.2011.11.006

[28]   Kandel, E.R., Schwartz, J.H. and Jessell, T.M. (2000) Principles of Neural Science. Fourth Edition. McGraw-Hill, New York, 324.

[29]   Evarts, E.V. (1966) Pyramidal Tract Activity associated with a Conditioned Hand Movement in the Monkey. Journal of Neurophysiology, 29, 1011-1027.

[30]   Schwartz, A.B., Kettner, R.E. and Georgopoulos, A.P. (1988) Primate Motor Cortex and Free Arm Movements to Visual Targets in Three-Dimensional Space. I. Relations between Single Cell Discharge and Direction of Movement. The Journal of Neurosci-ence, 8, 2913-2927.

[31]   Hodgkin, A.L. and Huxley, A.F. (1952) A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve. The Journal of physiology, 117, 500-544.
http://dx.doi.org/10.1113/jphysiol.1952.sp004764

[32]   Goldman, M.S. (2004) Enhancement of Information Transmission Efficiency by Synaptic Failures. Neural Computation, 16, 1137-1162.
http://dx.doi.org/10.1162/089976604773717568

[33]   Michel, C.M. and Murray, M.M. (2012) Towards the Utilization of EEG Asa Brain Imaging Tool. Neuroimage, 61, 371-385.
http://dx.doi.org/10.1016/j.neuroimage.2011.12.039

[34]   Ball, T., Demandt, E., Mutschler, I., Neitzel, E., Mehring, C., Vogt, K., Aertsen, A. and Schulze-Bonhagea, A. (2008) Movement Related Activity in the High Gamma Range of the Human EEG. Neuroimage, 41, 302-310.
http://dx.doi.org/10.1016/j.neuroimage.2008.02.032

[35]   Darvas, F., Scherer, R., Ojemann, J.G., Rao, R.P., Miller, K.J. and Sorensen, L.B. (2010) High Gamma Mapping Using EEG. Neuroimage, 49, 930-938.
http://dx.doi.org/10.1016/j.neuroimage.2009.08.041

[36]   Seeber, M., Scherer, R., Wagner, J., Solis-Escalante, T. and Müller-Putz, G.R. (2015) High and Low Gamma EEG Oscillations in Central Sensorimotor Areas Are Conversely Modulated during the Human Gait Cycle. Neuroimage, 112, 318-326.
http://dx.doi.org/10.1016/j.neuroimage.2015.03.045

 
 
Top