JBiSE  Vol.2 No.5 , September 2009
Review: structure of amyloid fibril in diseases
Abstract: Tissue deposition of normally soluble proteins, or their fragments, as insoluble amyloid fibrils causes both acquired and hereditary systemic amyloidoses, which is usually fatal. Amyloid is associated with serious diseases such as Alz-heimer’s disease, type 2 diabetes, Parkinson’s Disease, Huntington’s Disease, cancer and the transmissible spongiform encephalopathies. In-formation concerning the structure and mecha-nism of formation of fibrils in these diseases is critical for understanding the process of pathol-ogy of the amyloidoses and to the development of more effective therapeutic agents that target the underlying disease mechanisms. Structural models have been made using information from a wide variety of techniques, including electron microscopy, X-ray diffraction, solid state NMR, and Congo red and CD spectroscopy. Although each type of amyloidosis is characterised by a specific amyloid fibril protein, the deposits share pathognomonic histochemical properties and the structural morphology of all amyloid fibrils is very similar. In fact, the structural similarity that defines amyloid fibres exists principally at the level of β-sheet folding of the polypeptides within the protofilament, while the different types vary in the supramolecular assembly of their proto-filaments.
Cite this paper: nullGhahghaei, A. and Faridi, N. (2009) Review: structure of amyloid fibril in diseases. Journal of Biomedical Science and Engineering, 2, 345-358. doi: 10.4236/jbise.2009.25050.

[1]   Come, J. H., Fraser, P. E. and Lansbury, J., P. T., (1993) A ki-netic model for amyloid formation in the prion diseases: Im-portance of seeding. P. Natl. Acad. Sci. USA. 90, 5959–5963.

[2]   Chiti, F., Webster, P., Taddei, N., Clark, A., Stefani, M., Ram-poni, G. and Dobson, C. M. (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Bio-chemistry. 96, 3590–3594.

[3]   Arrigo, P. A. and Muller, G. E. W. (2001) ((W. E. G. Muller (Managing Editor), P. J., I.Kostovic, Y. Kuchino, A. Macieira-coelho, R. E. Rhoads, Ed.). Ed.).

[4]   van Montfort, L. R., Slingsby, C. and Vierling, E. (2002) Struc-ture and function of the small heat shock protein/ α-crystallin family of molecular chaperones. Protein. Chem. 59, 105–155.

[5]   Serpell, C. L. a. (2000) Alzheimer's amyloid fibrils: Structure and assembly. Biochim. Biophys. Acta. 1502, 16–30.

[6]   Pellarin, R. and Caflisch, A. (2006) Interpreting the aggrega-tion kinetics of amyloid peptides. J. Mol. Biol 360, 882–892.

[7]   Hall, D., Hirota, N. and Dobson, M. C. (2005) A toy model for predicting the rate of amyloid formation from unfolded protein. J. Mol. Biol. 195, 195–205.

[8]   Dobson, M. C. (2001) The structure basis of protein folding and its links with human disease. Phil. Trans. R. Soc. Lond. B.. 356, 133–145.

[9]   Dobson, M. C. (1999) Protein misfolding, evolution and dis-ease. TIBS. 24, 329–332.

[10]   Canet, D., Sunde, M., Last, A. M., Miranker, A., Spencer, A., Robinson, C. V. and Dobson, C. M. (1999) Mechanistic studies of the folding of human lysozyme and the origin of amyloido-genic behavior in its disease-related variants. Biochemistry. 38, 6419–27.

[11]   MacPhee, E. C. and Dobson, C. M. (2000) Chemical dissection and reassembly of amyloid fibril formed by a peptide fragment of transthyretin. J. Mol. Biol. 297, 1203–1215.

[12]   Shirahama, T. and Cohens, A. S. (1967) High-resolution elec-tron microscopic. Analysis of the amyloid fibril. J. Cell. Biol.. 33, 679–708.

[13]   Chamberlain, K. A., MacPhee, E. C., Zurdo, J., Morozova-Roche, A. L., Hill, A. H., Dobson, M. C. and Davis, J. J. (2000) Ultra structural organization of amyloid fibrils by atomic force microscopy. Biophys. J.. 79, 3282–3293.

[14]   Conway, K. A. and Harper, J. D. (2000) Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry. 39, 2552–63.

[15]   Cohen, A. S., Shirahama, T. and Skinner, M. (1982) Electron microscopy of amyloid. In electron microscopy of protein. Academic Press Inc, London UK. 3, 165–205.

[16]   Jiménez, J. L., Guijarro, J. I., Orlova, E., Zurdo, J., Dobson, C. M., Sunde, M. and Saibil, H. R. (1999) Cryo-electron micros-copy structure of an SH3 amyloid fibril and model of the mo-lecular packing. EMBO. 18, 815–821.

[17]   Serpell, L. C., Sunde, M., E., F. P., Luther, P. K., Morris, E. P., Sangren, O., Lundgren, E. and Blake, C. C. (1995) Examina-tion of the structure of the transthyretin amyloid fibril by im-age reconstruction from electron micrographs. J. Mol. Biol.. 254, 113–8.

[18]   Kirschner, A. D., Abraham, C. and Selkoe, J. D. (1986) X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in alzheimer disease indicates cross-β conformation. P. Natl. Acad. Sci. USA. 83, 503–508.

[19]   Blake, C. and Serpell, L. (1996) Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous β-sheet helix. Structure. 4, 989–98.

[20]   Sunde, M., Serpell, L. C., Bartlam, M., Fraser, P. E., Pepys, M. B. and Blake, C. F. (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739.

[21]   Guijarro, I. L., Sunde, M., Jones, A. J., Campbell, D. I. and Dobson, M. C. (1998) Amyloid fibril formation by an SH3 domain. Biochemistry. 95, 4224–4228.

[22]   Plakoutsi, G., Bemporad, F., Calamai, M., Taddei, N., Dobson, M. C. and Chiti, F. (2005) Evidence for a mechanism of amy-loid formation involving molecular reorganisation within na-tive-like precursor aggregates. J. Mol. Biol. 351, 910–922.

[23]   Cecchini, M., Curcio, R., Pappalardo, M., Melki, R. and Caflisch, A. (2006) A Molecular Dynamics Approach to the Structural Characterization of Amyloid Aggregation. J. Mol. Biol. 357, 1306–1321.

[24]   Hatters, D. M., Wilson, M. R., Easterbrook-Smith, S. B. and Howlett, G.J. (2002) Suppression of apolipoprotein C-II amy-loid formation by the extracellular chaperone, clusterin Eur. J. Biochem. 269, 2789–2794.

[25]   Haley, D. A., Horwitz, J. and Stewart, P. L. (1998) The small Heat-Shock protein,aB-crystallin, has a variable quaternary structure. J. Mol. Biol. 277, 27–35.

[26]   Jacchieri, G. S. (1998) Study of a-helix to b-strand to b-sheet transitions in amyloid: the role of segregated hydrophobic b-strands. Biophysical Chemistry. 74, 23–34.

[27]   Milner-White, J. E., Watson, D. J., Qi, G. and Hayward, S. (2006) Amyloid formation may involve a- to b-sheet intercon-version via peptide plane flipping. Structure. 14, 1369–1376.

[28]   Horwitz, S., Thomas, C., Gruener, G., Nand, S. and Shea, F. J. (1998) MR of Leptomeningeal Spinal and Posterior Fossa Amyloid. AJNR Am J Neuroradiol. 19, 900–902.

[29]   Horowitz, S., Thomas, C., Gruener, G., Nand, S. and Shea, F. J. (1998) MR of Leptomeningeal Spinal and Posterior Fossa Amyloid. AJNR Am J Neuroradiol. 19, 900–902.

[30]   Tycko, R. (2000) Solid-state NMR as a probe of amyloid fibril structure. Curr. Opin. Chem. Biol. 4, 500–506.

[31]   Makin, S. O., Atkins, E., Sikorski, P., Johansson, J. and Serpell, C. L. (2005) Molecular basis for amyloid fibril formation and stability. PNAS. 102, 315–320.

[32]   Otoo, N. H., Lee, G.K., Qiu, W. and Lipke, N. P. (2008) Can-dida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryotic Cell. 7, 776–782.

[33]   Religa, D., Laudon, H., Styczynska, M., Winblad, B., N?slund, J. and Haroutunian, V. (2003) Amyloid β Pathology in Alz-heimer’s Disease and Schizophrenia. Am J Psychiatry. 160, 867–872.

[34]   Barrel, J. M., Broadley, S. A., Schaffar, G. and Hart, F. U. (2004) Role of molecular chaperones in protein misfolding diseases. Semin. Cell. Dev. Biol. 15, 17–29.

[35]   Ellidson and Bottomley (2004) The role of Misfolding in the pathogenesis of human diseases. IUBMB life. 56(3), 119–123.

[36]   Carrell, R. W. and Lomas, D. A. (1997) Conformational diseas. Lancet. 350, 134–138.

[37]   Small, W. G., Kepe, V., Ercoli, M. L., Siddarth, P., Bookheimer, Y. S., Miller, J. K., Lavretsky, H., Burggren, C. A., Cole, M. G., Vinters, V. H., Thompson, M. P., Huang, C. S., Satyamurthy, N., Phelps, E. M. and Barrio, R. J. (2006) PET of brain amy-loid and Tau in mild cognitive impairment. N. Engl. J. Med. 355, 2652–2663.

[38]   Selkoe (2003) Folding proteins in fatal ways. Nature. 426(6968), 900–904.

[39]   Han, H., Weinreb, H. P. and Lansbury, T. P. (1995) The core Alzheimer’s peptide NAC forms amyloid fibrils which seed and are seeded by p-amyloid: is NAC a common trigger or target in neurodegenerative disease? Chemistry & Biology. 2, 163–l69.

[40]   Shoghi-Jadid, K., Barrio, R. J., Kepe, V., Wu, M. H., Small, W. G., Phelps, E. M. and Huang, C. S. (2005) Imaging b-amyloid fibrils in Alzheimer’s disease: a critical analysis through simu-lation of amyloid fibril polymerization. Nuclear Medicine and Biology. 32, 337–351.

[41]   Miura, Y., You, C. and Ohnishi, R. (2008) Inhibition of Alz-heimer amyloid aggregation by polyvalent trehalose. SCI-ENCE AND TECHNOLOGY OF ADVANCEDMATERIALS (Sci. Technol. Adv. Mater). 9, 1–6.

[42]   Sefton, F. C. and Yu, G. (2008) Ab Predictor of Alzheimer dis-ease symptoms Arch Neurol. 65, 875–876.

[43]   Malm, T., Ort, M., T? htivaara, L., Jukarainen, N., Goldsteins, G., Puoliv? li, J., Nurmi, A., Pussinen, R., Ahtoniemi, T., Miet-tinen, K. T., Kanninen, K., Leskinen, S., Vartiainen, N., Yrj? nheikki, J., Laatikainen, R., Harris-White, E. M., Koistinaho, M., Frautschy, A. S., Bures, J. and Koistinaho, J. (2006) b-Amyloid infusion results in delayed and age-dependent learn-ing deficits without role of inflammation or b-amyloid depos-its. PNAS 103, 8852–8857.

[44]   Grundman, M., Petersen, R. C., Ferris, H. S., Thomas, R. G., Aisen, S. P., Bennett, A. D., Foster, L. N., Jack, R. C., Galasko, R. D., Doody, R., Kaye, J., Sano, M., Mohs, R., Gauthier, S., Kim, T. H., Jin, S., Schultz, N. A., Schafer, K., Mulnard, R., Dyck, V. H. C., Mintzer, J., Zamrini, Y. E., Cahn-Weiner, D. and Thal, J. L. (2004) Mild cognitiveimpairment can be distin-guished from Alzheimer Disease and normal aging for clinical trials. Arch Neurol. 61, 59–66.

[45]   Huang, J. H. T., Yang, S. D., Plaskos, N. P., Go, S., Yip, M. C., Fraser, E. P. and Chakrabartty, A. (2000) Structural Studies of Soluble Oligomers of the Alzheimer b-Amyloid Peptide. J. Mol. Biol. 297, 73–87.

[46]   Rosenberg, N. R. (2000) Explaining the cause of the amyloid burden in Alzheimer disease. Arch Neurol. 59, 1367–1368.

[47]   Irie, K., Murakami, K., Masuda, Y., Morimoto, A., Ohigashi, H., Ohashi, R., Takegoshi, K., Nagao, M., Shimizu, T. and Shirasawa, T. (2005) Structure of B-amyloid fibrils and its relevance to their neurotoxicity: implications for the patho-genesis of Alzheimer’s disease. Journal of Bioscience and Bio-engineering. 99, 437–447.

[48]   Rivière, C., Richard, T., Quentin, L., Krisa, S., Mérillon, M. J. and Monti, P. J. (2007) Inhibitory activity of stilbenes on Alz-heimer’s b-amyloid fibrils in vitro. Bioorganic & Medicinal Chemistry. 15, 1160–1167.

[49]   Hardy, J. and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science. 297, 353–356.

[50]   Sachse, C., Xu, C., Wieligmann, K., Diekmann, S., Grigorieff, N. and F?ndrich, M. (2006). Quaternary structure of a mature amyloid fibril from Alzheimer’s Aβ(1-40) peptide. J. Mol. Biol. 362, 347–354.

[51]   Ma, B. Y. and Nussinov, R. (2002) Stabilities and conforma-tions of Alzheimer’s b-amyloid peptide oligomers (Ab (16–22), Ab (16–35) and Ab (10–35)): Sequence effects. Proc. Natl Acad. Sci. USA. 99, 14126–14131.

[52]   Buchete, V. N., Tycko, R. and Hummer, G. (2005) Molecular dynamics simulations of Alzheimer’s b-Amyloid protofila-ments. J. Mol. Biol. 353, 804–821.

[53]   Jime?nez, L. J., Tennent, G., Pepys, M. and Saibil, R. H. (2001) Structural Diversity of ex vivo Amyloid Fibrils Studied by Cryo-electron Microscopy. J. Mol. Biol. 311, 241–247.

[54]   Gilead, S. and Gazit, E. (2005) Self-organization of short pep-tide fragments: From amyloid fibrils to nanoscale su-pramolecular assemblies. Supramolecular Chemistry. 17, 87–92.

[55]   Pellarin, R., Guarnera, E. and Caflisch, A. (2007) Pathways and intermediates of amyloid fibril formation. J. Mol. Biol. 374, 917–924.

[56]   Serpell, L. C. and Smith, J. M. (2000) Direct visualisation of the b-sheet structure of synthetic Alzheimer's amyloid. J. Mol. Biol. 299, 225–231.

[57]   Klement, K., Wieligmann, K., Meinhardt, J., Hortschansky, P., Richter, W. and F?ndrich, M. (2007) Effect of different salt ions on the propensity of aggregation and on the structure of Alzheimer’s Aβ(1-40) amyloid fibrils. J. Mol. Biol. 373, 1321–1333.

[58]   Ban, T., Hoshino, M., Takahashi, T., Hamada, D., Hasegawa, K., Naiki, H. and Goto, Y. (2004) Direct observation of Ab amyloid fibril growth and inhibition. J. Mol. Biol. 344, 757–767.

[59]   Idicula-Thomas, S. and Balaji, V. P. (2007) Protein aggrega-tion: A perspective from amyloid and inclusion-body forma-tion. CURRENT SCIENCE. 92, 758–767.

[60]   Li, L., Darden, A. T., Bartolotti, L., Kominos, D. and Pedersen, G. L. (1999) An atomic model for the pleated b-sheet structure of Ab- amyloid protofilaments. Biophys J. 76, 2871–2878.

[61]   Weinreb, P. H., Jarrett, J. T. and Lansbury, P. T. (1994) Peptide models of a hydrophobic cluster at the C-terminus of the amy-loid protein. J. Am. Chem. Soc. 116, 10835–10836.

[62]   Williams, A. D., Portelius, E., Kheterpal, I., Guo, J., Cook, K. D., Xu, Y. and Wetzel, R. (2004) Mapping A-amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335, 833–842.

[63]   Lazo, N. D. and Downing, D. T. (1999). Fibril formation by amyloid b-proteins may involve b-helical protofibrils. J. Pept. Res., 53, 633-640.

[64]   Thusnelda, S. and Louise C, S. (2005) Structure and morphol-ogy of the Alzheimer’s amyloid fibril, Microscopy Research and Technique, 67, 210-217.

[65]   El-Agnaf, A. M. O., Mahil, S. D., Patel, P. B. and Austen, M. B. (2000) Oligomerization and Toxicity of b-Amyloid-42 Im-plicated in Alzheimer’s Disease. Biochemical and Biophysical Research Communications. 273, 1003–1007.

[66]   Grundman, M. (2000) Vitamin E and Alzheimer disease: the basis for additional clinical trials. Am Clin Nutr. 71, 630S–636S.

[67]   Tuszynski, H. M., Thal, L., Pay, M., Salmon, P. D., Sang U, H., Bakay, R., Patel, P., Blesch, A., Vahlsing, L. H., Ho, G., Tong, G., Potkin, G. S., Fallon, J., Hansen, L., Mufson, J. L., Kor-dower, H. J., Gall, C. and Conner, J. (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer dis-ease. Nat. Med. 11, 551–555.

[68]   Martin, K. B., Meinert, L. C. and Breitner, S. C. J. (2002) Double placebo design in a prevention trial for Alzheimer's disease. Cont. Clin. Trials. 23, 93–99.

[69]   D?′az-Hernández, M., Torres-Peraza, J., Salvatori-Abarca, A., Morán, M.A., Gómez-Ramos, P., Alberch, J. and Lucas, J. J. (2005) Full motor recovery despite striatal neuron loss and formation of irreversible amyloid-like inclusions in a condi-tional mouse model of Huntington’s Disease. The Journal of Neuroscience. 25(42), 9773–9781.

[70]   Gusella, J. F., Wexler, N. S., Conneally, P. M., Naylor, S. L., Anderson, M. A., Tanzi, R. E., Watkins, P. C., Ottina, K., Wal-lace, M. R., Sakaguchi, A. Y., Young, A. B., Shoulson, I., Bonilla, E. and Martin, J. B. (1983) A polymorphic DNA marker genetically linked to Huntington; s disease. Nature. 306, 234–238.

[71]   Anderson, K. E., Louis, E. D., Stern, Y. and Marder, K. S. (2001) Cognitive Correlates of Obsessive and Compulsive Symptoms in Huntington’s Disease. Am J Psychiatry. 158, 799–801.

[72]   Mitchell, I. J., Heims, H., Neville, E.A. and Rickards, H. (2005) Huntington’s disease patients show impaired perception of disgust in the gustatory and olfactory modalities. J. Neuro-psychiatry Clin Neurosci. 17, 119–121.

[73]   Hirakura, Y., Azimov, R., Azimova, R. and Kagan, L. B. (2000) Polyglutamine-Induced Ion Channels: A Possible Mechanism for the Neurotoxicity of Huntington and Other CAG Repeat Diseases. Journal of Neuroscience Research. 60, 490–494.

[74]   Davies, W. S., Beardsall, K., Turmaine, M., DiFiglia, M., Aronin, N. and Bates, P. G. (1998) Are neuronal intranuclear inclusions the common neuropathology of triplet-repeat disor-ders with polyglutamine-repeat expansions? THE LANCET. 351, 131–33.

[75]   Temussi, A. P., Masino, L. and Pastore, A. (2003) From Alz-heimer to Huntington: why is a structural understanding so difficult? The EMBO Journal. 22, 355–361.

[76]   Karpug, V. M., Becher, W. M., Springer, E. J., Chabas, D., Youssef, S., Pedotti, R., Mitchell, D. and Steinman, L. (2002). Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat. Med. 8, 143–149.

[77]   Karpuj, V. M., Becher, W. M., Springer, E. J., Chabas, D., Youssef, S., Pedotti, R., Mitchell, D. and Steinman, L. (2002) Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nature Medicine. 8, 143–149.

[78]   Hoffner, G. and Djian, P. (2000) Protein aggregation in Hunt-ington’s disease. Biochimie. 84, 273–278.

[79]   Mcgowan, P. D., Vanroon-Mom, W., Holloway, H., Bates, P. G., Mangiarini, L., Cooper, S. J. G., R., F. L. and Snell, G. R. (2000) Amyloid-lioke inclusions in huntington, s disease. Neu-roscience. 100, 677–680.

[80]   Gutekunst, A. C., Li, H. S., Yi, H., Mulroy, S. J., Kuemmerle, S., Jones, R., Rye, D., Ferrante, J. R., Hersch, M.S. and Li, J.X. (1999) Nuclear and Neuropil Aggregates in Huntington’s Dis-ease: Relationship to Neuropathology. The Journal of Neuro-science. 19(7), 2522–2534.

[81]   Ross, A. C. (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron. 35, 819–822.

[82]   Dahlgren, R. P., Karymov, A. M., Bankston, J., Holden, T., Thumfort, P., Ingram, V. M. and Lyubchenko, L. Y. (2005) Atomic force microscopy analysis of the Huntington protein nanofibril formation. Nanomedicine: Nanotechnology, Biology and Medicine. 1, 52–57.

[83]   Scherzinger, E., Sittler, A., Schweiger, K., Heiser, V., Lurz, R., Hasenbank, R., Bates, P.G., Lehrach, H. and Wanker, E. E. (1999) Self-assembly of polyglutamine-containing huntingtin fragment into amyloid-like fibrils: Implications for Hunting-ton’s disease pathology. Proc. Natl. Acad. Sci. USA. 96, 4604–4609.

[84]   Borlongan, C. V., Koutouzis, T. K., Freeman, T. B., Cahill, D. W. and Sanberg, P. R. (1995) Behavioral pathology induced by repeated systemic injections of 3-nitropropionic acid mimics the motoric symptoms of Huntington's disease. Brain Res. 697, 254–257.

[85]   Spillantini, G. M., Crowther, A. R., Jakes, R., Hasegawa, M. and Goedertm, M. (1998) A-synuclein in filamentous inclu-sions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. USA. 95, 6469–6473.

[86]   Recchia, A., Debetto, P., Negro, A., Guidolin, D., Skaper, D. S. and Giusti, P. (2004) A-Synuclein and Parkinson’s disease. The FASEB J. 18, 617–626.

[87]   Dauer, W. and Przedborski, S. (2003) Parkinson’s disease: mechanisms and models. Neuron. 39, 889–909.

[88]   Hariz, G. and Hriz, I. M. (2000) Gender distribution in surgery for Parkinson's disease. Parkinsonism Relate Disord. 6, 155–157.

[89]   Iwaki, T., Wisniewski, T., Iwaki, A., Corbin, E., Tomokane, N., Tateishi, J. and Goldman, J. E. (1992) Accumulation of aB-crystallin in central nervous system glia and neurons in patho-logic conditions. Am. J. Path. 140, 345–356.

[90]   Serpell, C. L., Berriman, J., Jakes, R., Goedert, M. and Crow-ther, A. R. (2000) Fiber diffraction of synthetic a-synuclein filaments shows amyloid-like cross-b conformation. PNAS. 97, 4897-4902.

[91]   Mizutani, T., Inose, T., Nakajima, S., Kakimi, S., Uchigata, M. and Ikeda, K. (1998) Familial parkinsonism and dementia with ballooned neurons, argyrophilic neuronal inclusions, atypical neurofibrillary tangles, tau-negative strocytic fibrillary tangles, and Lewy bodies.. Acta Neuropathol. (Berl). 95, 15–27.

[92]   Sasaki, K., Doh-ura, K., Wakisaka, Y. and Iwaki, T. (2002) Clusterin/apolipoprotein J is associated with cortical Lewy bodies: immunohistochemical study in cases with alpha-synucleinopathies. Acta Neuropathol. (Berl). 104, 225–230.

[93]   McLean, P. J., Kawamata, H., Shariff, S., Hewett, J., Sharma, N. and Ueda, K. (2002) Torsin A and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggrega-tion. J. Neuro. 83, 846–854.

[94]   Splllantini, G. M. a., Crowther, A. R., JAKES, R., Cairns, J. N., Lantos, L. P. and Goedert, M. (1998) Filamentous a-synuclein inclusions link multiple system atrophy with Parkinson’s dis-ease and dementia with Lewy bodies. Neuroscience. 251, 205–208.

[95]   El-Agnaf, A. M. O., Jakes, R., Curran, D. M. and Wallace, A. (1998) E?ects of the mutations Ala30 to Pro and Ala53 to Thr on the physical and morphological properties of K-synuclein protein implicated in Parkinson's disease. FEBS. 440, 67–70.

[96]   Spillantini, G. M. a., Crowther, A. R., JAKES, R., Cairns, J. N., Lantos, L. P. and Goedert, M. (1998) Filamentous a-synuclein inclusions link multiple system atrophy with Parkinson’s dis-ease and dementia with Lewy bodies. Neuroscience. 251, 205–208.

[97]   El-Agnaf, A. M. O., JAKES, R., Curran, D. M., Middleton, D., Ingenito, R., Bianchi, E., Pessi, A., Neill, D. and Wallace, A. (1998) Aggregates from mutant and wild-type a-synuclein proteins and NAC peptide induce apoptotic cell death in hu-man neuroblastoma cells by formation of L-sheet and amyloid-like ¢laments. FEBS. 440, 71–75.

[98]   Arima, K., Hirai, S., Sunohara, N., Aoto, K., Izumiyama, Y., Ue′da, K., Ikeda, K. and Kawai, M. (1999) Cellular co-localization of phosphorylated tau- and NACPr a-synuclein-epitopes in Lewy bodies in sporadic Parkinson’s disease and in dementia with Lewy bodies. Brain Research. 843, 53–61.

[99]   Arima, K., Ue′da, K., Sunohara, N., Hirai, S., Izumiyama, Y., Tonozuka-Uehara, H. and Kawai, M. (1998) Immunoelectron-microscopic demonstration of NACPra-synuclein-epitopes on the filamentous component of Lewy bodies in Parkinson’s disease and in dementia with Lewy bodies. Brain Research. 808, 93–100.

[100]   Conway, A. K., Lee, J. S., Rochet, C. J., Ding, T. T., William-son, E. R. and Lansbury, T. P. (2000) Acceleration of oli-gomerization, not fibrillization, is a shared property of both a-synuclein mutations linked to early-onset Parkinson’s disease: Implications for pathogenesis and therapy. PNAS. 97, 571–576.

[101]   Conway, A. K., Harper, J. D. and Lansbury, P. T. (2000) Fibrils Formed in Vitro from R-Synuclein and Two Mutant Forms Linked to Parkinson’s Disease are Typical Amyloid. Biochem. 39, 2552–2563.

[102]   Lu¨cking, B. C. and Brice, A. (2000) a-synuclein and Parkin-son’s disease. CMLS, Cell. Mol. Life Sci. 57, 1894–1908.

[103]   Williams, A. D., Portelius, E., Kheterpal, I., Guo, J., Cook, K. D., Xu, Y. and Wetzel, R. (2004) Mapping A amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335, 833–842.

[104]   Casalone, C., Zanusso, G., Acutis, P., Ferrari, S., Capucci, L., Tagliavini, F., Monaco, S. and Caramelli, M. (2004) Identifica-tion of a second bovine amyloidotic spongiform encephalopa-thy: Molecular similarities with sporadic Creutzfeldt-Jakob disease. PNAS 101, 3065–3070.

[105]   Ishikawa, K., Doh-ura, K., Kudo, Y., Nishida, N., Murakami-Kubo, I., Ando, Y., Sawada, T. and Iwaki, T. (2004) Amyloid imaging probes are useful for detection of prion plaques and treatment of transmissible spongiform encephalopathies. Jour-nal of General. 85, 1785–1790.

[106]   Aguzzi, A., Heikenwalder, M. and Miele, G. (2004) Progress and problems in the biology, diagnostics, and therapeutics of prion diseases. J. Clin. Invest. 114, 153–160.

[107]   Weissmann, C. and Aguzzi, A. (2005) Approaches to therapy of prion diseases. Ann. Rev. of Med. 56, 321–344.

[108]   Nandi, P. K. and Nicole, J.-C. (2004) Nucleic acid and prion protein interaction produces spherical amyloids which can function in vivo as coats of spongiform encephalopathy agent. J. Mol. Biol. 344, 827–837.

[109]   Kourie, J I and A, S. A. (2000) Properties of cytotoxic peptide-induced ion channels. Am J Physiol Cell Physiol. 278, C1063–C1087.

[110]   Kourie, J. I. and L, H. C. (2002) Ion channel formation and membrane-linked pathologies of misfolded hydrophobic pro-teins:the role of dangerous unchaperoned molecules. Clin Exp Pharmacol Physiol, 29, 741–753.

[111]   Volles, M. J. and T, L. P. (2001) Vesicle permeabilization by protofibrillar α-synuclein: comparison of wild-type with Park-inson’s disease linked mutants and insights in the mechanisms. Biochem. 40, 7812.7819.

[112]   Williams, A. D., Portelius, E., Kheterpal, I., Guo, J., Cook, K. D., Xu, Y. and Wetzel, R. (2004) Mapping A amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335, 833–842.

[113]   Dobson. (2004) Principle of protein folding, Misfolding and aggregation. Semin. Cell. Dev. Biol. 15, 3–16.

[114]   Thomas, Q. and Pederson. (1995) Defective protein folding as a basis of human diseases. TIBS. 20 (11), 456–459.

[115]   Welch and Brown (1996) Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperone. 1(2), 109–115.