IJAA  Vol.6 No.2 , June 2016
Planck Quantization of Newton and Einstein Gravitation
Abstract: In this paper we rewrite the gravitational constant based on its relationship with the Planck length and based on this, we rewrite the Planck mass in a slightly different form (that gives exactly the same value). In this way we are able to quantize a series of end results in Newton and Einstein’s gravitation theories. The formulas will still give exactly the same values as before, but everything related to gravity will then come in quanta. This also gives some new insight; for example, the gravitational deflection of light can be written as only a function of the radius and the Planck length. Numerically this only has implications at the quantum scale; for macro objects the discrete steps are so tiny that they are close to impossible to notice. Hopefully this can give additional insight into how well or not so well (ad hoc) quantized Newton and Einstein’s gravitation is potentially linked with the quantum world.
Cite this paper: Haug, E. (2016) Planck Quantization of Newton and Einstein Gravitation. International Journal of Astronomy and Astrophysics, 6, 206-217. doi: 10.4236/ijaa.2016.62017.

[1]   Newton, I. (1686) Philosophiae Naturalis Principia Mathematica. Joseph Streater, London.

[2]   Planck, M. (1901) Ueber das gesetz der energieverteilung im normalspectrum. Annalen der Physik, 309, 553-563.

[3]   Bisnovatyi-Kogan, G.S. (2006) Checking the Variability of the Gravitational Constant with Binary Pulsars. International Journal of Modern Physics D, 15, 1047.

[4]   Galli, S., Melchiorri, A., Smoot, G.F. and Zahn, O. (2009) From Cavendish to Planck: Constraining Newton’s Gravitational Constant with CMB Temperature and Polarization Anisotropy. Physical Review D, 80, Article ID: 023508.

[5]   Fixler, B., Foster, G.T., McGuirk, J.M. and Kasevich, M.A. (2007) Atom Interferometer Measurement of the Newtonian Constant of Gravity. Science, 315, 74-77.

[6]   Schlamminger, S. (2014) Fundamental Constant: A Cool Way to Measure Big G. Nature, 510, 478-480.

[7]   Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M. and Tino, G.M. (2014) Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms. Nature, 510, 518-521.

[8]   Ade, P.A.R., Aghanim, N., et al. (2015) Planck Intermediate Results. XXIV. Constraints on Variations in Fundamental Constants. Astronomy & Astrophysics, 580, A22.

[9]   Haug, E.G. (2016) The Gravitational Constant and the Planck’s Units: A Simplification of the Quantum Realm.

[10]   Schutz, B. (2003) Gravity from the Ground up. Cambridge University Press, Cambridge.

[11]   Augousti, A.T. and Radosz, A. (2006) An Observation on the Congruence of the Escape Velocity in Classical Mechanics and General Relativity in a Schwarzschild Metric. European Journal of Physics, 376, 331-335.

[12]   Tipler, P.A. and Llewellyn, R.A. (2012) Modern Physics. 6th Edition, W. H. Freeman and Company, New York.

[13]   Einstein, A. (1916) Näherungsweise integration der feldgleichungen der gravitation. Sitzungsberichte der KÖniglich Preussischen Akademie der Wissenschaften, Berlin, 668-696.

[14]   Schwarzschild, K. (1916) üeber das gravitationsfeld einer kugel aus inkompressibler flussigkeit nach der einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, Berlin, 424.

[15]   Schwarzschild, K. (1916) über das gravitationsfeld eines massenpunktes nach der einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse fur Mathematik, Physik, und Technik, Berlin, 189.

[16]   Soares, D.S.L. (2009) Newtonian Gravitational Deflection of Light Revisited.