JBiSE  Vol.9 No.7 , June 2016
Potential Antimicrobial Effects of Gatifloxacin on Periodontopathic Bacteria in Vitro
Abstract: The aim of this study was to identify the potential antibacterial effects of gatifloxacin on periodontal pathogens including Aggregatibacter actinomycetemcomitans, Porphyromonas gingi-valis, and Prevotella intermedia. The minimum inhibitory concentrations (MIC) of gatifloxacin and its bactericidal effects were investigated. Gatifloxacin inhibited the growth of all three kinds of periodontopathic bacteria tested in broth. The MIC value of 2.5 nM was found to be the most effective in inhibiting A. actinomycetemcomitans. An adenosine triphosphate biolumi-nescence assay revealed that gatifloxacin exhibited bactericidal effects on the tested bacteria in a time-dependent manner. The safety of gatifloxacin in mammalian cells was evaluated by assessing the viability of normal human dermal fibroblast (NHDF) cells treated with gatifloxacin. Almost all NHDF cells survived after 2-d culture, while 81% of the cells survived after 4-d culture when treated with 1.0 × 103 nM gatifloxacin. These results indicate that gatifloxacin is a possible drug for local administration to prevent periodontal infection.
Cite this paper: Miura, T. , Tanabe, K. , Tsukagoshi, E. , Kida, K. , Shizawa, Y. , Miyake, N. , Kasahara, M. and Yoshinari, M. (2016) Potential Antimicrobial Effects of Gatifloxacin on Periodontopathic Bacteria in Vitro. Journal of Biomedical Science and Engineering, 9, 354-359. doi: 10.4236/jbise.2016.97030.

[1]   Sumida, S., Ishihara, K., Kishi, M. and Okuda, K. (2002) Transmission of Periodontal Disease-Associated Bacteria from Teeth to Osseointegrated Implant Regions. International Journal of Oral & Maxillofacial Implants, 7, 696-702.

[2]   Leonhardt, A., Renvert, S. and Dahlen, G. (1999) Microbial Findings at Failing Implants. Clinical Oral Implants Research, 10, 339-345.

[3]   Augthun, M. and Conrads, G. (1997) Microbial Findings of Deep Peri-Implant Bone Defects. International Journal Oral & Maxillofacial Implants, 12, 106-112.

[4]   Mombelli, A., van Oosten, M.A.C., Schürch, E. and Lang, N.P. (1987) The Microbiota Associated with Successful or Failing Osseointegrated Titanium Implants. Oral microbiology and Immunology, 2, 145-151.

[5]   Dzink, J.L., Tanner, A.C., Haffajee, A.D. and Socransky, S.S. (1985) Gram Negative Species Associated with Active Destructive Periodontal Lesions. Journal of Clinical Periodontology, 12, 648-659.

[6]   Slots, J. and Genco, R.J. (1984) Black-Pigmented Bacteroides Species, Capno-cytophaga Species, and Actinobacillus actinomycetemcomitans in Human Periodontal Disease: Virulence Factors in Colonization, Survival, and Tissue Destruction. Journal of Dental Research, 63, 412-421.

[7]   Sweeney, E.A., Alcoforado, G.A., Nyman, S. and Slots, J. (1987) Prevalence and Microbiology of Localized Prepubertal Periodontitis. Oral Microbiology and Immunology, 2, 65-70.

[8]   Slots, J. and Listgarten, M.A. (1988) Bacteroides gingivalis, Bacteroides intermedius, and Actinobacillus actinomycetemcomitans in Human Periodontal Diseases. Journal of Clinical Periodontology, 15, 85-93.

[9]   Yoshinari, M., Oda, Y., Kato, T., Okuda, K. and Hirayama, A. (2000) Influence of Surface Modifications to Titanium on Oral Bacterial Adhesion in Vitro. Journal of Biomedical Materials Research Part A, 52, 388-394.<388::AID-JBM20>3.0.CO;2-E

[10]   Yoshinari, M., Oda, Y., Kato, T. and Okuda, K. (2001) Influence of Surface Modifications to Titanium on Anti-Bacterial Activity in Vitro. Biomaterials, 22, 2043-2048.

[11]   Norowski Jr., P.A. and Bumgardner, J.D. (2009) Biomaterial and Anti-biotic Strategies for Peri-Implantitis: A Review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88, 530-543.

[12]   Yoshinari, M., Kato, T., Matsuzaka, K., Hayakawa, T. and Shiba, K. (2010) Prevention of Biofilm Formation on Titanium Surfaces Modified with Conjugated Molecules Comprised of Antimicrobial and Titanium-Binding Peptides. Biofouling, 26, 103-110.

[13]   Miura, T., Iohara, K., Kato, T., Ishihara, K. and Yoshinari, M. (2010) Basic Peptide Protamine Exerts Antimicrobial Activity against Periodontopathic Bacteria. Journal of Biomedical Science and Engineering, 3, 1069-1072.

[14]   Linder, J.A., Huang, E.S., Steinman, M.A., Gonzales, R. and Stafford, R.S. (2005) Fluoroquinolone Prescribing in the United States: 1995 to 2002. American Journal of Medicine, 118, 259-268.

[15]   Rubinstein, E. (2001) History of Quinolones and Their Side Effects. Chemotherapy, 47, 3-8.

[16]   Ball, P. (2000) New Antibiotics for Community-Acquired Lower Respiratory Tract Infections: Improved Activity at a Cost? International Journal of Anti-microbial Agents, 16, 263-272.

[17]   Park, H.S., Lee, J.H. and Kim, H.K. (2015) Comparative Clinical Study of Conjunctival Toxicities of Newer Generation Fluoroquinolones without the Influence of Preservatives. International Journal of Ophthalmology, 8, 1220-1223.

[18]   Okuda, K., Naito, Y., Ohta, K., Fukumoto, Y., Kimura, Y., Ishikawa, I., Kinoshita, S. and Takazoe, I. (1984) Bacteriological Study of Periodontal Lesions in Two Sisters with Juvenile Periodontitis and Their Mother. Infection and Immunity, 45, 118-121.

[19]   Kimizuka, R., Miura, T. and Okuda, K. (1996) Characterization of Actinobacillus actinomycetemcomitans Hemolysin. Microbiology and Immunology, 40, 717-723.

[20]   Kida, K., Tanabe, K., Sasaki, H., Furuya, Y., Miura, T., Yoshinari, M. and Yajima, Y. (2016) Release Properties of Atelocollagen-Gelatin Complexes as Carriers for Local Administration of Fluvastatin. Dental Materials Journal, in press.