JBiSE  Vol.9 No.7 , June 2016
Characteristics of Beige Adipocytes Induced from White Adipocytes by Kikyo Extract
Abstract: Beige adipocytes are believed to have a high ability to consume fat. As such, compounds capable of inducing the development of beige adipocytes may be useful as drugs for anti-obesity and anti-type 2 diabetes. However, the true nature of beige adipocytes remains unclear. The purpose of this study is to confirm whether or not white adipocyte can differentiate to beige adipocytes and to clarify the characteristics of beige adipocytes. We first searched for an inducer of beige adipocytes and found that kikyo extract, a component of bofu-tsusho-san, was a strong inducer. We then attempted to prove that beige adipocytes could be induced from white adipocytes. Second, we clarified the characteristics of beige adipocytes induced from white adipocytes. The results suggested that beige adipocytes were high-performance adipocytes with a greater ability to synthesize and consume triglyceride and take up glucose than white adipocytes.
Cite this paper: Shiomi, N. , Ito, M. and Watanabe, K. (2016) Characteristics of Beige Adipocytes Induced from White Adipocytes by Kikyo Extract. Journal of Biomedical Science and Engineering, 9, 342-353. doi: 10.4236/jbise.2016.97029.

[1]   Matuzawa, Y. (2006) The Metabolic Syndrome and Adipocytokines. FEBS Letters, 580, 2917-292.

[2]   Chan, J.M., Rimm, E.B., Colditz, G.A., Stampfer, M.J. and Willett, W.C. (1994) Obesity, Fat Distribution, and Weight Gain as Risk Factors for Clinical Diabetes in Men. Diabetes Care, 17, 961-969.

[3]   Wang, S., Moustaid-Moussa, N., Chen, L., Mo, H., Shastri, A., Su, R., Bapat, P., Kwun, I. and Shen, C.L. (2014) Novel Insights of Dietary Polyphenols and Obesity. The Journal of Nutritional Biochemistry, 25, 1-18.

[4]   Kim, H.M., Do, C.H. and Lee, D.H. (2010) Characterization of Taurine as Anti-Obesity Agent in C. elegans. Journal of Biomedical Science, 17, S33.

[5]   Derosa, G., Maffioli, P., Ferrari, I., D’Angelo, A., Fogari, E., Palumbo, I., Randazzo, S. and Cicero, A.F. (2011) Orlistat and L-Carnitine Compared to Orlistat Alone on Insulin Resistance in Obese Diabetic Patients. Endocrine Journal, 57, 777-786.

[6]   Shiomi, N., Maeda, M. and Mimura, M. (2011) Compounds That Inhibit Triglyceride Accumulation and TNFα Secretion in Adipocytes. Journal of Biomedical Science and Engineering, 4, 684-691.

[7]   Arechaga, I., Ledesma, A. and Rial, E. (2001) The Mitochondrial Uncoupling Protein UCP1: A Gated Pore. IUBMB Life, 52,165-173.

[8]   Kontani, Y., Wang, Y., Kimura, K., Inokuma, K.I., Saito, M., Suzuki-Miura, T., Wang, Z., Sato, Y., Mori, N. and Yamashita, H. (2005) UCP1 Deficiency Increases Susceptibility to Diet-Induced Obesity with Age. Aging Cell, 4,147-155.

[9]   Zhou, Y., Yang, J., Huang, J., Li, T., Xu, D., Zuo, B., Hou, L., Wu, W., Zhang, L., Xia, X., Ma, Z., Ren, Z. and Xiong, Y. (2014) The Formation of Brown Adipose Tissue Induced by Transgenic Over-Expression of PPARγ2. Biochemical and Biophysical Research Communications, 446, 959-964.

[10]   de Jesus, L.A., Carvalho, S.D., Ribeiro, M.O., Schneider, M., Kim, S.W., Harney, J.W., Larsen, P.R. and Bianco, A.C. (2001) The Type 2 Iodothyronine Deiodinase Is Essential for Adaptive Thermogenesis in Brown Adipose Tissue. The Journal of Clinical Investigation, 108, 1379-1385.

[11]   Yoneshiro, T., Aita, S., Matsushita, M., Kameya, T., Nakada, K., Kawai, Y. and Saito, M. (2011) Brown Adipose Tissue, Whole-Body Energy Expenditure, and Thermogenesis in Healthy Adult Men. Obesity (Silver Spring), 19, 13-16.

[12]   Kozak, L.P. and Anunciado-Koza, R. (2008) UCP1: Its In-volvement and Utility in Obesity. International Journal of Obesisty (Lond), 32, S32-S38.

[13]   Porter, C., Chondronikola, M. and Sidossis, L.S. (2015) The Therapeutic Potential of Brown Adipocytes in Humans. Frontiers in Endocrinology (Lausanne), 6, 156.

[14]   Lee, Y.H., Jung, Y.S. and Choi, D. (2014) Recent Advance in Brown Adipose Physiology and Its Therapeutic Potential. Experimental & Molecular Medicine, 46, e78.

[15]   Seale, P., Bjork, B., Yang, W., Kajimura, S., Chin, S., Kuang, S., Scimè, A., Devarakonda, S., Conroe, H.M., Erdjument-Bromage, H., Tempst, P., Rudnicki, M.A., Beier, D.R. and Spiegelman, B.M. (2008) PRDM16 Controls a Brown Fat/Skeletal Muscle Switch. Nature, 454, 961-967.

[16]   Seale, P., Kajimura, S., Yang, W., Chin, S., Rohas, L.M., Uldry, M., Tavernier, G., Langin, D. and Spiegelman, B.M. (2007) Transcriptional Control of Brown Fat Determination by PRDM16. Cell Metabolism, 6, 38-54.

[17]   Vegiopoulos, A., Müller-Decker, K., Strzoda, D., Schmitt, I., Chichelnitskiy, E., Ostertag, A., Berriel Diaz, M., Rozman, J., Hrabe de Angelis, M., Nüsing, R.M., Meyer, C.W., Wahli, W., Klingenspor, M. and Herzig, S. (2010) Cyclooxygenase-2 Controls Energy Homeostasis in Mice by de Novo Recruitment of Brown Adipocytes. Science, 328, 1158-1161.

[18]   Cypess, A.M., Chen, Y.C., Sze, C., Wang, K., English, J., Chan, O., Holman, A.R., Tal, I., Palmer, M.R., Kolodny, G.M. and Kahn, C.R. (2012) Cold but Not Sympathomimetics Activates Hu-man Brown Adipose Tissue in vivo. Proceeding of National Academy of Science of the United States of America, 109, 10001-10005.

[19]   Wu, L., Zhou, L., Chen, C., Gong, J., Xu, L., Ye, J., Li, D. and Li, P. (2014) Cidea Controls Lipid Droplet Fusion and Lipid Storage in Brown and White Adipose Tissue. Science China Life Sciences, 57, 107-116.

[20]   Haas, B., Schlinkert, P., Mayer, P. and Eckstein, N. (2012) Targeting Adi-pose Tissue. Diabetology & Metabolic Syndrome, 4, 43.

[21]   Inokuma, K., Ogura-Okamatsu, Y., Toda, C., Kimura, K., Yamashita, H. and Saito, M. (2005) Uncoupling Protein 1 Is Necessary for Norepineph-rine-Induced Glucose Utilization in Brown Adipose Tissue. Diabetes, 54, 1385-1391.

[22]   Schulz, T.J. and Tseng, Y.H. (2013) Brown Adipose Tissue: Development, Metabolism and Beyond. Biochemical Journal, 453, 167-178.

[23]   Hondares, E., Rosell, M., Díaz-Delfín, J., Olmos, Y., Monsalve, M., Iglesias, R., Villarroya, F. and Giralt, M. (2011) Peroxisome Proliferator-Activated Receptor α (PPARα) Induces PPARγ Coactivator 1α (PGC-1α) Gene Expression and Contributes to Thermogenic Activation of Brown Fat: Involvement of PRDM16. The Journal of Biological Chemistry, 286, 43112-43122.

[24]   Lillioja, S., Bogardus, C., Mott, D.M., Kennedy, A.L., Knowler, W.C. and Howard, B.V. (1985) Relationship between Insulin-Mediated Glucose Disposal and Lipid Metabolism in Man. The Journal of Clinical Investigation, 75, 1106-1115.

[25]   Yang, R. and. Barouch, L.A. (2007) Leptin Signaling and Obesity: Cardiovascular Consequences. Circulation Research, 101, 545-559.

[26]   Kusminski, C.M., McTernan, P.G. and Kumar, S. (2005) Role of Resistin in Obesity, Insulin Resistance and Type II Diabetes. Clinical Science (Lond), 109, 243-256.

[27]   Lowell, B.B. and Bachman, E.S. (2003) Beta-Adrenergic Receptors, Diet-Induced Thermogenesis, and Obesity. Journal of Biological Chemistry, 278, 29385-29388.

[28]   Arner, P., Einarsson, K., Backman, L., Nilsell, K., Lerea, K.M. and Livingston, J.N. (1983) Studies of Liver Insulin Receptors in Non-Obese and Obese Human Subjects. Journal of Clinical Investigation, 72, 1729-1736.

[29]   Mozzanega, B., Mioni, R., Granzotto, M., Chiarelli, S., Xamin, N., Zuliani, L., Sicolo, N., Marchesoni, D. and Vettor, R. (2004) Obesity Reduces the Expression of GLUT4 in the Endometrium of Normoin-sulinemic Women Affected by the Polycystic Ovary Syndrome. Annals of the New York Academy of Sciences, 1034, 364-374.

[30]   Miura, S., Kai, Y., Ono, M. and Ezaki, O. (2003) Overexpression of Peroxisome Proliferator-Activated Receptor γ Coactivator-1α Down-Regulates GLUT4 mRNA in Skeletal Muscles. Journal of Biological Chemis-try, 278, 31385-31390.

[31]   Choi, J.H., Banks, A.S., Estall, J.L., Kajimura, S., Bostrom, P., Laznik, D., Ruas, J.L., Chalmers, M.J., Kamenecka, T.M., Blüher, M., Griffin, P.R. and Spiegelman, B.M. (2010) Anti-Diabetic Drugs Inhibit Obesity-Linked Phosphorylation of PPARγ by Cdk5. Nature, 466, 451-456.

[32]   Yu, Q., Takahashi, T., Nomura, M., Yasuda, M., Obatake-Ikeda, K. and Kobayashi, S. (2013) Effects of Single Administered Bofutsushosan-Composed Crude Drugs on Diabetic Serum Parameters in Streptozoto-cin-Induced Diabetic Mice. Chinese Medicine, 4, 24-31.

[33]   Yoshida, T., Sakane, N., Wakabayashi, Y., Umekawa, T. and Kondo, M. (1995) Thermogenic, Anti-Obesity Effects of Bofu-Tsusho-San in MSG-Obese Mice. International Journal of Obesity and Related Metabolic Disorder, 19, 717- 722.

[34]   Azushima, K., Tamura, K., Haku, S., Wakui, H., Kanaoka, T., Ohsawa, M., Uneda, K., Kobayashi, R., Ohki, K., Dejima, T., Maeda, A., Hashimoto, T., Oshikawa, J., Kobayashi, Y., Nomura, K., Azushima, C., Takeshita, Y., Fujino, R., Uchida, K., Shibuya, K., Ando, D., Tokita, Y., Fujikawa, T., Toya, Y. and Umemura, S. (2015) Effects of the Oriental Herbal Medicine Bofu-Tsusho-San in Obesity Hypertension: A Multicenter, Randomized, Parallel-Group Controlled Trial (ATH-D-14-01021.R2). Atherosclerosis, 240, 297-304.

[35]   Lehr, L., Canola, K., Léger, B. and Giacobino, J.P. (2009) Differentiation and Characterization in Primary Culture of White Adipose Tissue Brown Adipocyte-Like Cells. International Journal of Obesity, 33, 680-686.

[36]   Petrovic, N., Walden, T.B., Shabalina, I.G., Timmons, J.A., Cannon, B. and Nedergaard, J. (2010) Chronic Peroxisome Proliferator-Activated Receptor γ (PPARγ) Activation of Epididymally Derived White Adipocyte Cultures Reveals a Population of Thermogenically Competent, UCP1-containing Adipocytes Molecularly Distinct from Classic Brown Adipocytes. Journal of Biological Chemistry, 285, 7153-7164.