Back
 ABC  Vol.6 No.3 , June 2016
The Novel Pyruvated Glucogalactan Sulfate Isolated from the Red Seaweed, Hypnea pannosa
Abstract: The polysaccharide was isolated from Hypnea pannosa which was grown in Okinawa, Japan. The yield of the polysaccharide was 17.2%, and the total carbohydrates, pyruvic acid, sulfuric acid and ash contents were 55.2%, 3.8%, 35.2% and 24.3%, respectively. 3,6-Anhydro-α-D-galactose, β-D-galactose, α-D-galactose and D-glucose were identified by liquid and thin-layer chromatography. Fourier transform infrared (FTIR) spectra of the polysaccharide resembled that of ι-carrageenan. From the 1H- and 13C-NMR spectra, 1,3-linked β-D-galactose, 1,4-linked anhydro-α-D-galactose, 1,4-linked α-D-galactose, 1,4-linked β-D-glucose and pyruvic acid (carboxyl acetal, methyl proton and methyl carbon) were assigned. Methylation analysis revealed terminal D-galactose 0.1 mol), 1,4-linked D-glucose (1.0 mol) and 1,2,3,4,6-linked D-galactose (3.7 mol) for native polysaccharide, and terminal D-galactose, 1,4-linked D-galactose (1.9 mol), 1,4-linked D-glucose (1.0 mol), 1,3- linked D-galactose (1.7 mol), and 1,3,4,6-linked D-galactose (0.3 mol) which substituted with pyruvate group at 4 and 6 positions for desulfated polysaccharide. The polysaccharide was the novel pyruvated glucogalactan sulfate, the structure of which was proposed.
Cite this paper: Tako, M. , Ohtoshi, R. , Kinjyo, K. and Uechi, S. (2016) The Novel Pyruvated Glucogalactan Sulfate Isolated from the Red Seaweed, Hypnea pannosa. Advances in Biological Chemistry, 6, 114-125. doi: 10.4236/abc.2016.63010.
References

[1]   Tako, M. (1994) Isolation of an Agar from Gracilaria blodgettii and Its Gelling Properties. Journal of Applied Glycoscience, 41, 305-310.

[2]   Tako, M., Higa, M., Medoruma, K. and Nakasone, Y. (1999) A Highly Methylated Agar from Red Seaweed Gracilaria arcuata. Botanica Marina, 42, 513-517.
http://dx.doi.org/10.1515/BOT.1999.058

[3]   Tako, M., Uehara, M., Kawashima, Y., Chinen, I. and Hongo, F. (1996) Isolation and Identification of Fucoidan from Okinawamozuku (Cladosiphon okamuranus TOKIDA). Journal of Applied Glycoscience, 43, 143-148.

[4]   Tako, M., Nakada, T. and Hongo, F. (1999) Chemical Characterization of Fucoidan from Commercially Cultured Nemacystus decipiens. Bioscience, Biotechnology, and Biochemistry, 63, 1813-1815.
http://dx.doi.org/10.1271/bbb.63.1813

[5]   Tako, M., Yoza, E. and Tohma, S. (2000) Chemical Characterization of Acetylfucoidan and Alginate from Commercially Cultured Cladosiphon okamuranus. Botanica Marina, 43, 393-398.
http://dx.doi.org/10.1515/BOT.2000.040

[6]   Shiroma, R., Konishi, T. and Tako, M. (2008) Structural Study of Fucoidan from the Brown Seaweed Hijikia fusiformis. Food Science and Technology Research, 14, 176-182.
http://dx.doi.org/10.3136/fstr.14.176

[7]   Tako, M., Kiyuna, S. and Hongo, F. (2001) Isolation and Characterization of Alginic Acid from Commercially Cultured Nemacystus decipiens. Bioscience, Biotechnology and Biochemistry, 65, 654-657.

[8]   Qi, Z.-Q., Tako, M. and Toyama, S. (1997) Chemical Characterization of κ-Carrageenan of Ibaranori (Hypnea charoides Lamouroux). Journal of Applied Glycoscience, 44, 137-142.

[9]   Lin, L.-H., Tako, M. and Hongo, F. (2000) Isolation and Characterization of ι-Carrageenan Isolated from Eucheuma serra. Journal of Applied Glycoscience, 47, 303-310.
http://dx.doi.org/10.5458/jag.47.303

[10]   Pakdee, P., Kinjyo, K., Tako, M., Tamaki, Y., Tomita, Y. and Yaga, S. (1995) Water-Soluble Polysaccharide from Seeds of Trees I. Galactomannan from Seeds of Leucaena leucocephala de WIT. Mokuzai Gakkaishi, 41, 440-443.

[11]   Tamaki, Y., Teruya, T. and Tako, M. (2010) Chemical Structure of Galactomannan from Delonix regia. Bioscience, Biotechnology, and Biochemistry, 74, 1110-1112.
http://dx.doi.org/10.1271/bbb.90935

[12]   Tamaki, Y., Uechi, S., Taira, T., Ishihara, M., Adaniya, S., Uesato, K., Fukuta, M. and Tako, M. (2004) Isolation and Characterization of Pectin from Pericarp of Citrus depressa. Journal of Applied Glycoscience, 51, 19-25.
http://dx.doi.org/10.5458/jag.51.19

[13]   Tamaki, Y., Konishi, T., Fukuta, M. and Tako, M. (2008) Isolation and Structural Characterization of Pectin from Endocarp of Citrus depressa. Food Chemistry, 107, 352-364.
http://dx.doi.org/10.1016/j.foodchem.2007.08.027

[14]   Tamaki, Y. and Tako, M. (2008) Isolation and Characterization of Pectin from Peel of Citrus tankan. Bioscience, Biotechnology and Biochemistry, 72, 896-899.
http://dx.doi.org/10.1271/bbb.70706

[15]   Nakamura, M., Yamashiro, Y., Konishi, T., Hanashiro, I. and Tako, M. (2011) Structural Characteristics of Rhamnan Sulfate from Commercially Cultured Monostroma nitidum. Nippon Shokuhin Kagaku Kogaku Kaishi, 58, 245-251.
http://dx.doi.org/10.3136/nskkk.58.245

[16]   Tako, M., Tamanaha, M., Tamashiro, Y. and Uechi, S. (2015) Struc-ture of Ulvan Isolated from the Edible Green Seaweed, Ulva pertusa. Advances in Bioscience and Biotechnology, 6, 645-655.
http://dx.doi.org/10.4236/abb.2015.610068

[17]   Tako, M., Dobashi, Y., Tamaki, Y., Konishi, T., Yamada, M., Ishida, H. and Kiso, M. (2012) Identification of Rare 6- Deoxy-D-altrose from an Edible Mushroom (Lactarius lividatus). Carbohydrate Research, 350, 25-30.
http://dx.doi.org/10.1016/j.carres.2011.12.016

[18]   Tako, M., Shimabukuro, J., Jiang, W., Yamada, M., Ishida, H. and Kiso, M. (2013) Rare 6-Deoxy-D-altrose from the Folk Medicinal Mushroom Lactarius akahatsu. Biochemical Compounds, 1, 1-6.
http://dx.doi.org/10.7243/2052-9341-1-5

[19]   Tako, M., Dobashi, Y., Shimabukuro, J., Yogi, T., Uechi, K., Tamaki, Y. and Konishi, T. (2013) Structure of a Novel α-Glucan Substitute with the Rare 6-Deoxy-D-altrose from Lactarius lividatus (Mushroom). Carbohydrate Polymers, 92, 2135-2140.
http://dx.doi.org/10.1016/j.carbpol.2012.11.010

[20]   Tako, M. (2002) Acetyl Fucoidan and Its Manufacturing Methods. Patent No. 3371124.

[21]   Teruya, T., Konishi, T., Uechi, S., Tamaki, H. and Tako, M. (2007) An-ti-Proliferative Activity of Oversulfated Fucoidan from Commercially Cultured Cladosiphon okamuranus TOKIDA in U937 Cells. International Journal of Biological Macromolecules, 41, 221-226.
http://dx.doi.org/10.1016/j.ijbiomac.2007.02.010

[22]   Teruya, T., Tatemoto, H., Konishi, T. and Tako, M. (2009) Structural Characteristics and in Vitro Macrophage Activation of Acetyl Fucoidan from Cladosiphon okamuranus. Glycoconjugate Journal, 26, 1019-1018.
http://dx.doi.org/10.1007/s10719-008-9221-x

[23]   Tako, M. and Nakamura, S. (1986) Indicative Evidence for a Conformational Transition in κ-Carrageenan from Studies of Viscosity-Shear Rate Dependence. Carbohydrate Research, 155, 200-205.
http://dx.doi.org/10.1016/S0008-6215(00)90146-0

[24]   Tako, M. and Nakamura, S. (1986) Synergistic Interaction between Kappa-Carrageenan and Locust-Bean Gum in Aqueous Media. Agricultural and Biological Chemistry, 50, 2817-2822.

[25]   Qi, Z.-Q., Tako, M. and Toyama, S. (1997) Molecular Origin of the Rheological Characteristics of κ-Carrageenan Isolated from Ibaranori (Hypnea charoides Lamouroux). Journal of Applied Glycoscience, 44, 531-536.

[26]   Tako, M., Nakamura, S. and Kohda, Y. (1987) Indicative Evidence for a Conformational Transition in ι-Carrageenan. Carbohydrate Research, 161, 247-253.
http://dx.doi.org/10.1016/S0008-6215(00)90081-8

[27]   Lin, L.-H., Tako, M. and Hongo, F. (2001) Molecular Origin for Rheo-logical Characteristics of ι-Carrageenan Isolated from Eucheuma serra. Food Science and Technology Research, 17, 176-180.
http://dx.doi.org/10.3136/fstr.7.176

[28]   Tako, M. and Nakamura, S. (1988) Gelation Mechanism of Agarose. Carbohydrate Research, 180, 277-283.
http://dx.doi.org/10.1016/0008-6215(88)80084-3

[29]   Tako, M., Sakae, A. and Nakamura, S. (1989) Rheological Properties of Gellan Gum in Aqueous Media. Agricultural and Biological Chemistry, 53, 771-776.

[30]   Tako, M., Teruya, T., Tamaki, Y. and Konishi, T. (2009) Molecular Origin for Rheological Characteristics of Native Gellan Gum. Colloid and Polymer Science, 287, 1445-1454.
http://dx.doi.org/10.1007/s00396-009-2112-2

[31]   Tako, M. and Hizukuri, S. (1995) Evidence for Conformational Transition in Amylose. Journal of Carbohydrate Chemistry, 14, 613-622.
http://dx.doi.org/10.1080/07328309508005362

[32]   Tamaki, Y., Konishi, T. and Tako, M. (2011) Gelation and Retrogradation Mechanism of Wheat Amylose. Materials, 4, 1763-1775.
http://dx.doi.org/10.3390/ma4101763

[33]   Tako, M. and Kohda, Y. (1997) Calcium Induced Association Characteristics of Alginate. Journal of Applied Glycoscience, 44, 153-159.

[34]   Teruya, T., Tamaki, Y., Konishi, T. and Tako, M. (2010) Rheological Characteristics of Alginate Isolated from Commercially Cultured Nemacystus decipiens (Itomozuku). Journal of Applied Glycoscience, 57, 7-12.
http://dx.doi.org/10.5458/jag.57.7

[35]   Tako, M., Tohma, S., Taira, T. and Ishihara, M. (2003) Gelation Mechanism of Deacetylated Rhamsan Gum. Carbohydrate Polymers, 54, 279-285.
http://dx.doi.org/10.1016/S0144-8617(03)00029-8

[36]   Tako, M. (1999) Molecular Origin for Thermal Stability of Waxy-Rice (Kogane) Starch. Starch/Starke, 48, 414-417.
http://dx.doi.org/10.1002/star.19960481106

[37]   Tako, M. and Hizukuri, S. (1997) Molecular Origin for the Thermal Stability of Rice Amylopectin. Journal of Carbohydrate Chemistry, 16, 655-666.
http://dx.doi.org/10.1080/07328309708007343

[38]   Tako, M. and Hizukuri, S. (2000) Molecular Origin for Thermal Stability of Koshihikari Rice Amylopectin. Food Research International, 33, 35-40.
http://dx.doi.org/10.1016/S0963-9969(00)00021-1

[39]   Tako, M. and Hizukuri, S. (1999) Gelatinization Mechanism of Rice Starch. Journal of Carbohydrate Chemistry, 18, 573-584.
http://dx.doi.org/10.1080/07328309908544020

[40]   Tako, M. (2000) Gelatinization Characteristics of Rice Starch. Journal of Applied Glycoscience, 47, 187-192.
http://dx.doi.org/10.5458/jag.47.187

[41]   Tako, M. and Hizukuri, S. (2000) Retrogradation Mechanism of Rice Starch. Cereal Chemistry, 77, 473-477.
http://dx.doi.org/10.1094/CCHEM.2000.77.4.473

[42]   Tako, M. and Hizukuri, S. (2003) Gelatinization Mechanism of Potato Starch. Carbohydrate Polymers, 48, 397-401.
http://dx.doi.org/10.1016/S0144-8617(01)00287-9

[43]   Tako, M., Tamaki, Y., Konishi, T., Shibanuma, K., Hanashiro, I. and Takeda, Y. (2008) Gelatinization and Retrogradation Characteristics of Wheat (Rosella) Starch. Food Research International, 41, 797-802.
http://dx.doi.org/10.1016/j.foodres.2008.07.002

[44]   Tako, M., Tamaki, Y., Teruya, T., Konishi, T., Shibanuma, K., Hanashiro, I. and Takeda, Y. (2009) Rheological Characteristics of Halberd Wheat Starch. Starch/Starke, 61, 275-281.
http://dx.doi.org/10.1002/star.200800073

[45]   Tako, M. (2000) Structural Principles of Polysaccharide Gels. Journal of Applied Glycoscience, 47, 49-53.
http://dx.doi.org/10.5458/jag.47.49

[46]   Tako, M., Tamaki, Y., Teruya, T. and Takeda, Y. (2014) The Principles of Starch Gelatinization and Retrogradation. Food and Nutrition Sciences, 5, 280-291.
http://dx.doi.org/10.4236/fns.2014.53035

[47]   Tako, M. (2015) The Principle of Polysaccharide Gels. Advances in Bioscience and Biotechnology, 6, 22-36.
http://dx.doi.org/10.4236/abb.2015.61004

[48]   Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28, 350-356.

[49]   Yaphe, Y. and Arsenault, G.P. (1965) Improved Resorcinol Reagent for the Determination of Fructose, and of 3,6-Anhydrogalactose in Polysaccharides. Analytical Biochemistry, 13, 143-148.
http://dx.doi.org/10.1016/0003-2697(65)90128-4

[50]   Dodgson, K.S. and Price, R.C. (1962) A Note on the Determination of the Ester Sulfate Content of Sulfated Polysaccharides. Biochemical Journal, 84, 106-110.
http://dx.doi.org/10.1042/bj0840106

[51]   Sloneker, J.H. and Jeanes, A. (1962) Pyruvic Acid, a Unique Component of an Exocellular Bacterial Polysaccharide. Nature, 194, 478-479.
http://dx.doi.org/10.1038/194478a0

[52]   Ciucanu, I. and Kerek, K. (1984) A Simple and Rapid Method for the Permethylation of Carbohydrates. Carbohydrate Research, 131, 209-217.
http://dx.doi.org/10.1016/0008-6215(84)85242-8

[53]   Chiovitti, A., Bacic, A., Craik, D.J., Kraft, G.T., Liao, M.L., Falshaw, R. and Furneaux, R.H. (1998) A Pyruvated Carrageenan from Australian Specimens of the Red Alga Sarconema filiforme. Carbohydrate Research, 310, 77-83.
http://dx.doi.org/10.1016/S0008-6215(98)00170-0

[54]   Chiovitti, A., Bacic, A., Craik, D.J., Munro, S.L.A., Kraft, G.T. and Liao, M.L. (1998) Carrageenans with Complex Substitution Patterns from Red Algae of the Genus Erythroclonium. Carbohydrate Research, 305, 243-252.
http://dx.doi.org/10.1016/S0008-6215(97)00000-1

[55]   Greer, C.W. and Yaphe, W. (1984) Hybrid (Iota-nu-Kappa) Carrageenan from Eucheuma nudum (Rhodophyta, Solieriaceae), Identified Using Iota- and Kappa-Carrageenases and 13C-NMR Magnetic Resonance Spectroscopy. Botanica Marina, 27, 479-484.

[56]   Van de Velde, F., Peppelman, H.A., Rollema, H.A. and Tromp, R.H. (2001) On the Structure of κ/ι-Hybrid Carrageenans. Carbohydrate Research, 331, 271-283.
http://dx.doi.org/10.1016/S0008-6215(01)00054-4

[57]   Falshaw, R., Furneaux, R.H. and Wong, H. (2003) Analysis of Pyruvylated β-Carrageenan by 2D NMR Spectroscopy and Reductive Partial Hydrolysis. Carbohydrate Research, 338, 1403-1414.
http://dx.doi.org/10.1016/S0008-6215(03)00171-X

[58]   Van de Velde, F., Pereira, L. and Rollema, H.S. (2004) The Revised NMR Chemical Shift Data of Carrageenans. Carbohydrate Research, 339, 2309-2313.
http://dx.doi.org/10.1016/j.carres.2004.07.015

[59]   Guibet, M., Kervarec, N., Génicot, S., Chevolot, Y. and Helbert, W. (2006) Complete Assignment of 1H and 13C NMR Spectra of Gigartina skottsbergii λ-Carrageenan Using Carrabiose Oligosaccharides Prepare by Enzymatic Hydrolysis. Carbohydrate Research, 341, 1859-1869.
http://dx.doi.org/10.1016/j.carres.2006.04.018

[60]   Roubroeks, J.P., Andersson, R. and Aman, P. (2000) Structural Features of (1→3),(1→4)-β-D-glucan and Arabinoxylan Fractions Isolated from Rye Bran. Carbohydrate Polymers, 47, 3-11.
http://dx.doi.org/10.1016/S0144-8617(99)00129-0

[61]   Liu, Y. and Wang, F. (2007) Structural Characterization of an Active Polysaccharide from Phellinus ribis. Carbohydrate Polymers, 70, 386-392.
http://dx.doi.org/10.1016/j.carbpol.2007.04.019

[62]   Tojo, E. and Prado, J. (2003) A Simple 1H NMR Methods for the Quantification of Carrageenans in Blends. Carbohydrate Polymers, 53, 325-329.
http://dx.doi.org/10.1016/S0144-8617(03)00080-8

[63]   Jansson, P.-E., Kenne, L., Liedgren, H., Lindberg, B. and Lonngren, J. (1976) A Practical Guide to the Methylation Analysis of Carbohydrates. Chemical Communications (University of Stockholm), No. 8, 1-75.

[64]   Sassaki, G.L., Gorin, P.A.J., Souza, L.M., Czelusniak, P.A. and Iacomini, M. (2005) Rapid Synthesis of Partially O-Methylated Alditol Acetate Standards for GC-MS: Some Relative Activities of Hydroxyl Groups of Methyl Glycopyranosides on Purdie Methylation. Carbohydrate Research, 340, 731-739.
http://dx.doi.org/10.1016/j.carres.2005.01.020

 
 
Top