ABC  Vol.6 No.3 , June 2016
Plant Cell Wall, a Challenge for Its Characterisation
Abstract: The plant cell wall is a complex 3D network composed of polysaccharides, lignin and proteins. The knowledge of the structure and content of each cell wall polymer is a prerequisite to understand their functions during plant development and adaptation but also to optimise their industrial applications. The analysis of cell wall compounds is complicated by their multiple molecular interactions. In this review, we present numerous methods to purify, characterise and quantify proteins, polysaccharides and lignin from the wall. Two kinds of approaches are detailed: the first presents in vitro methods which involve the breakdown of the molecular linkages between polymers thanking to chemical, physical and/or enzymatic treatments. The second approach describes in situ methods that allow the cell wall polymer characterisation thanking to many analytical techniques coupled with microscopy. If microscopy is the common point of all of them, their development is associated with improvement of analytical techniques, increasing their power of resolution.
Cite this paper: Costa, G. and Plazanet, I. (2016) Plant Cell Wall, a Challenge for Its Characterisation. Advances in Biological Chemistry, 6, 70-105. doi: 10.4236/abc.2016.63008.

[1]   Mauseth, J.D. (1988) Plant Anatomy. Benjamin/Cummings Publ. Co., Menlo Park.

[2]   Ebringerova, A., Hromadkova, Z. and Heinze, T. (2005) Hemicellulose. Polysaccharides I. Springer, Berlin Heidelberg, 1-67.

[3]   Scheller, H.V. and Ulvskov, P. (2010) Hemicelluloses. Annual Review of Plant Biology, 61, 263-289.

[4]   Hartley, R.D. and Ford, C.W. (1989) Phenolic Constituents of Plant Cell Walls and Wall Biodegradability. Plant Cell Wall Polymers, Biogenesis and Biodegradation, 399, 137-145.

[5]   de O. Buanafina, M.M. (2009) Feruloylation in Grasses: Current and Future Perspectives. Molecular Plant, 2, 861-872.

[6]   Ralph, J. and Helm, R.F. (1993) Lignin/Hydroxycinnamic Acid/Polysaccharide Complexes: Synthetic Models for Regiochemical Characterization. In: Jung, H.G., Buxton, D.R., Hatfield, R.D. and Ralph, J., Eds., Forage Cell Wall Structure and Digestibility, ASA-CSSA-SSSA, Madison, 201-246.

[7]   Scalbert, A., Monties, B., Lallemand, J.-Y., Guittet, E. and Rolando, C. (1985) Ether Linkage between Phenolic Acids and Lignin Fractions from Wheat Straw. Phytochemistry, 24, 1359-1362.

[8]   Kondo, T., Mizuno, K. and Kato, T. (1990) Cell Wall-Bound p-Coumaric and Ferulic Acids in Italian Ryegrass. Canadian Journal of Plant Science, 70, 495-499.

[9]   Popper, Z.A. and Fry, S.C. (2004) Primary Cell Wall Composition of Pteridophytes and Spermatophytes. New Phytologist, 164, 165-174.

[10]   Trethewey, J.A., Campbell, L.M. and Harris, P.J. (2005) (1→ 3),(1→ 4)-β-d-Glucans in the Cell Walls of the Poales (Sensu Lato): An Immunogold Labeling Study Using a Monoclonal Antibody. American Journal of Botany, 92, 1660- 1674.

[11]   Fry, S.C., Nesselrode, B.H., Miller, J.G. and Mewburn, B.R. (2008) Mixed-Linkage (1→ 3, 1→ 4)-β-d-Glucan Is a Major Hemicellulose of Equisetum (Horsetail) Cell Walls. New Phytologist, 179, 104-115.

[12]   Albersheim, P., Darvill, A.G., O’Neill, M.A., Schols, H.A. and Voragen, A.G.J. (1996) An Hypothesis: The Same Six Polysaccharides Are Components of the Primary Cell Walls of All Higher Plants. Pectins and Pectinases, 14, 47-53.

[13]   Mohnen, D. (2008) Pectin Structure and Biosynthesis. Current Opinion in Plant Biology, 11, 266-277.

[14]   Harholt, J., Suttangkakul, A. and Vibe Scheller, H. (2010) Biosynthesis of Pectin. Plant Physiology, 153, 384-395.

[15]   Boerjan, W., Ralph, J. and Baucher, M. (2003) Lignin Biosynthesis. Annual Review of Plant Biology, 54, 519-546.

[16]   Cassab, G.I. (1998) Plant Cell Wall Proteins. Annual Review of Plant Biology, 49, 281-309.

[17]   Ellis, M., Egelund, J., Schultz, C.J. and Bacic, A. (2010) Arabinogalactan-Proteins: Key Regulators at the Cell Surface? Plant Physiology, 153, 403-419.

[18]   Vanzin, G.F., Madson, M., Carpita, N.C., Raikhel, N.V., Keegstra, K. and Reiter, W.-D. (2002) The Mur2 Mutant of Arabidopsis Thaliana Lacks Fucosylated Xyloglucan Because of a Lesion in Fucosyltransferase AtFUT1. Proceedings of the National Academy of Sciences of the United States of America, 99, 3340-3345.

[19]   Marshall, R.D., Neuberger, A., et al. (1970) Aspects of the Structure and Metabolism of Glyco-Proteins. Advances in Carbohydrate Chemistry and Biochemistry, 25, 407-478.

[20]   Faillard, H. and Schauer, R. (1972) Glycoproteins: Their Composition, Structure and Function. Elsevier, Amsterdam, 1246-1267.

[21]   Kornfeld, R. and Kornfeld, S. (1976) Comparative Aspects of Glycoprotein Structure. Annual Review of Biochemistry, 45, 217-238.

[22]   Clarke, A.E., Anderson, R.L. and Stone, B.A. (1979) Form and Function of Arabinogalactans and Arabinogalactan- Proteins. Phytochemistry, 18, 521-540.

[23]   Feiz, L., Irshad, M., Pont-Lezica, R.F., Canut, H. and Jamet, E. (2006) Evaluation of Cell Wall Preparations for Proteomics: A New Procedure for Purifying Cell Walls from Arabidopsis Hypocotyls. Plant Methods, 2, 10.

[24]   Jamet, E., Canut, H., Boudart, G. and Pont-Lezica, R.F. (2006) Cell Wall Proteins: A New Insight through Proteomics. Trends in Plant Science, 11, 33-39.

[25]   Irshad, M., Canut, H., Borderies, G., Pont-Lezica, R. and Jamet, E. (2008) A New Picture of Cell Wall Protein Dynamics in Elongating Cells of Arabidopsis Thaliana: Confirmed Actors and Newcomers. BMC Plant Biology, 8, 94.

[26]   Borderies, G., Jamet, E., Lafitte, C., Rossignol, M., Jauneau, A., Boudart, G., et al. (2003) Proteomics of Loosely Bound Cell Wall Proteins of Arabidopsis Thaliana Cell Suspension Cultures: A Critical Analysis. Electrophoresis, 24, 3421-3432.

[27]   Charmont, S., Jamet, E., Pont-Lezica, R. and Canut, H. (2005) Proteomic Analysis of Secreted Proteins from Arabidopsis Thaliana Seedlings: Improved Recovery Following Removal of Phenolic Compounds. Phytochemistry, 66, 453-461.

[28]   Boudart, G., Jamet, E., Rossignol, M., Lafitte, C., Borderies, G., Jauneau, A., et al. (2005) Cell Wall Proteins in Apoplastic Fluids of Arabidopsis Thaliana Rosettes: Identification by Mass Spectrometry and Bioinformatics. Proteomics, 5, 212-221.

[29]   Jiang, L., He, L. and Fountoulakis, M. (2004) Comparison of Protein Precipitation Methods for Sample Preparation Prior to Proteomic Analysis. Journal of Chromatography A, 1023, 317-320.

[30]   Visser, N.F.C., Lingeman, H. and Irth, H. (2005) Sample Preparation for Peptides and Proteins in Biological Matrices Prior to Liquid Chromatography and Capillary Zone Electrophoresis. Analytical and Bioanalytical Chemistry, 382, 535-558.

[31]   Bodzon-Kulakowska, A., Bierczynska-Krzysik, A., Dylag, T., Drabik, A., Suder, P., Noga, M., et al. (2007) Methods for Samples Preparation in Proteomic Research. Journal of Chromatography B, 849, 1-31.

[32]   Bunkenborg, J., Pilch, B.J., Podtelejnikov, A.V. and Wisniewski, J.R. (2004) Screening for N-Glycosylated Proteins by Liquid Chromatography Mass Spectrometry. Proteomics, 4, 454-465.

[33]   Faye, L., Boulaflous, A., Benchabane, M., Gomord, V. and Michaud, D. (2005) Protein Modifications in the Plant Secretory Pathway: Current Status and Practical Implications in Molecular Pharming. Vaccine, 23, 1770-1778.

[34]   Wang, Y., Wu, S. and Hancock, W.S. (2006) Approaches to the Study of N-Linked Glycoproteins in Human Plasma Using Lectin Affinity Chromatography and Nano-HPLC Coupled to Electrospray Linear Ion Trap—Fourier Transform Mass Spectrometry. Glycobiology, 16, 514-523.

[35]   Minic, Z., Jamet, E., Négroni, L., Der Garabedian, P.A., Zivy, M. and Jouanin, L. (2007) A Sub-Proteome of Ara- bidopsis Thaliana Mature Stems Trapped on Concanavalin A Is Enriched in Cell Wall Glycoside Hydrolases. Journal of Experimental Botany, 58, 2503-25012.

[36]   Sparbier, K., Koch, S., Kessler, I., Wenzel, T. and Kostrzewa, M. (2005) Selective Isolation of Glycoproteins and Glycopeptides for MALDI-TOF MS Detection Supported by Magnetic Particles. Journal of Biomolecular Techniques: JBT, 16, 407-413.

[37]   Zhang, H., Li, X., Martin, D.B. and Aebersold, R. (2003) Identification and Quantification of N-Linked Glycoproteins Using Hydrazide Chemistry, Stable Isotope Labeling and Mass Spectrometry. Nature Biotechnology, 660-666.

[38]   Yariv, J., Rapport, M.M. and Graf, L. (1962) The Interaction of Glycosides and Saccharides with Antibody to the Corresponding Phenylazo Glycosides. Biochemical Journal, 85, 383.

[39]   Paulsen, B.S., Craik, D.J., Dunstan, D.E., Stone, B.A. and Bacic, A. (2014) The Yariv Reagent: Behaviour in Different Solvents and Interaction with a Gum Arabic Arabinogalactan Protein. Carbohydrate Polymers, 106, 460-468.

[40]   Bond, M.R. and Kohler, J.J. (2007) Chemical Methods for Glycoprotein Discovery. Current Opinion in Chemical Biology, 11, 52-58.

[41]   Zhang, Y., Giboulot, A., Zivy, M., Valot, B., Jamet, E. and Albenne, C. (2011) Combining Various Strategies to Increase the Coverage of the Plant Cell Wall Glycoproteome. Phytochemistry, 72, 1109-1023.

[42]   Klemm, D., Schmauder, H.-P. and Heinze, T. (2005) Cellulose. Biopolymers Online, Wiley-VCH Verlag GmbH & Co. KGaA.

[43]   Xu, A., Wang, J. and Wang, H. (2010) Effects of Anionic Structure and Lithium Salts Addition on the Dissolution of Cellulose in 1-Butyl-3-Methylimidazolium-Based Ionic Liquid Solvent Systems. Green Chemistry, 12, 268-275.

[44]   Swatloski, R.P., Spear, S.K., Holbrey, J.D. and Rogers, R.D. (2002) Dissolution of Cellose with Ionic Liquids. Journal of the American Chemical Society, 124, 4974-4975.

[45]   Zhang, H., Wu, J., Zhang, J. and He, J. (2005) 1-Allyl-3-Methylimidazolium Chloride Room Temperature Ionic Liquid: A New and Powerful Nonderivatizing Solvent for Cellulose. Macromolecules, 38, 8272-8277.

[46]   Zavrel, M., Bross, D., Funke, M., Büchs, J. and Spiess, A.C. (2009) High-Throughput Screening for Ionic Liquids Dissolving (Ligno-)Cellulose. Bioresource Technology, 100, 2580-2587.

[47]   Pinkert, A., Marsh, K.N., Pang, S. and Staiger, M.P. (2009) Ionic Liquids and Their Interaction with Cellulose. Chemical Reviews, 109, 6712-6728.

[48]   Jiang, M., Zhao, M., Zhou, Z., Huang, T., Chen, X. and Wang, Y. (2011) Isolation of Cellulose with Ionic Liquid from Steam Exploded Rice Straw. Industrial Crops and Products, 33, 734-738.

[49]   Andanson, J.-M., Bordes, E., Devémy, J., Leroux, F., Pádua, A.A. and Gomes, M.F.C. (2014) Understanding the Role of Co-Solvents in the Dissolution of Cellulose in Ionic Liquids. Green Chemistry, 16, 2528-2538.

[50]   Fry, S.C. (1988) The Growing Plant Cell Wall: Chemical and Metabolic Analysis. Reprint Edition, The Blackburn Press, Caldwell, 1-333.

[51]   Fry, S.C. (1986) Cross-Linking of Matrix Polymers in the Growing Cell Walls of Angiosperms. Annual Review of Plant Physiology, 37, 165-186.

[52]   Aspinall, G.O., Craig, J.W.T. and Whyte, J.L. (1968) Lemon-Peel Pectin: Part I. Fractionation and Partial Hydrolysis of Water-Soluble Pectin. Carbohydrate Research, 7, 442-452.

[53]   Ray, B., Loutelier-Bourhis, C., Lange, C., Condamine, E., Driouich, A. and Lerouge, P. (2004) Structural Investigation of Hemicellulosic Polysaccharides from Argania Spinosa: Characterisation of a Novel Xyloglucan Motif. Carbohydrate Research, 339, 201-208.

[54]   Norris, F.W. and Resch, C.E. (1937) The Pectic Substances of Plants. Biochemical Journal, 31, 1945-1951.

[55]   Brett, C.T. and Hillman, J.R. (1985) Biochemistry of Plant Cell Walls. CUP Archive.

[56]   Levigne, S., Thomas, M., Ralet, M.-C., Quemener, B. and Thibault, J.-F. (2002) Determination of the Degrees of Methylation and Acetylation of Pectins Using a C18 Column and Internal Standards. Food Hydrocolloids, 16, 547-550.

[57]   Garna, H., Mabon, N., Robert, C., Cornet, C., Nott, K., Legros, H., et al. (2007) Effect of Extraction Conditions on the Yield and Purity of Apple Pomace Pectin Precipitated But Not Washed by Alcohol. Journal of Food Science, 72, C001-C009.

[58]   Yeoh, S., Shi, J. and Langrish, T.A.G. (2008) Comparisons between Different Techniques for Water-Based Extraction of Pectin from Orange Peels. Desalination, 218, 229-237.

[59]   Koubala, B.B., Kansci, G., Mbome, L.I., Crépeau, M.-J., Thibault, J.-F. and Ralet, M.-C. (2008) Effect of Extraction Conditions on Some Physicochemical Characteristics of Pectins from “Améliorée” and “Mango” Mango Peels. Food Hydrocolloids, 22, 1345-1351.

[60]   Bertin, C., Rouau, X. and Thibault, J.-F. (1988) Structure and Properties of Sugar Beet Fibres. Journal of the Science of Food and Agriculture, 44, 15-29.

[61]   Thakur, B.R., Singh, R.K., Handa, A.K. and Rao, M.A. (1997) Chemistry and Uses of Pectin—A Review. Critical Reviews in Food Science & Nutrition, 37, 47-73.

[62]   Stoddart, R.W., Barrett, A.J. and Northcote, D.H. (1967) Pectic Polysaccharides of Growing Plant Tissues. Biochemical Journal, 102, 194-204.

[63]   Jarvis, M.C., Hall, M.A., Threlfall, D.R. and Friend, J. (1981) The Polysaccharide Structure of Potato Cell Walls: Che- mical Fractionation. Planta, 152, 93-100.

[64]   Jarvis, M.C. (1982) The Proportion of Calcium-Bound Pectin in Plant Cell Walls. Planta, 154, 344-346.

[65]   Barrett, A.J. and Northcote, D.H. (1965) Apple Fruit Pectic Substances. Biochemical Journal, 94, 617-627.

[66]   Kratchanova, M., Panchev, I., Pavlova, E. and Shtereva, L. (1994) Extraction of Pectin from Fruit Materials Pretreated in an Electromagnetic Field of Super-High Frequency. Carbohydrate Polymers, 25, 141-144.

[67]   Fishman, M.L., Chau, H.K., Hoagland, P. and Ayyad, K. (1999) Characterization of Pectin, Flash-Extracted from Orange Albedo by Microwave Heating, under Pressure. Carbohydrate Research, 323, 126-138.

[68]   Fishman, M.L., Chau, H.K., Hoagland, P.D. and Hotchkiss, A.T. (2006) Microwave-Assisted Extraction of Lime Pectin. Food Hydrocolloids, 20, 1170-1177.

[69]   Zhiwei, L., Nan, W. and Mengyu, Z. (2002) The Application of Microwave Assisted Extraction Technique in Food Chemistry. Journal of Wuhan Polytechnic University, 2, 18-21.

[70]   Sahari, M.A., Akbarian, A. and Hamedi, M. (2003) Effect of Variety and Acid Washing Method on Extraction Yield and Quality of Sunflower Head Pectin. Food Chemistry, 83, 43-47.

[71]   Mesbahi, G., Jamalian, J. and Farahnaky, A. (2005) A Comparative Study on Functional Properties of Beet and Citrus Pectins in Food Systems. Food Hydrocolloids, 19, 731-738.

[72]   Singthong, J., Ningsanond, S., Cui, S.W. and Goff, H.D. (2005) Extraction and Physicochemical Characterization of Krueo Ma Noy Pectin. Food Hydrocolloids, 19, 793-801.

[73]   Liu, Z.D., Wei, G.H., Guo, Y.C. and Kennedy, J.F. (2006) Image Study of Pectin Extraction from Orange Skin Assisted by Microwave. Carbohydrate Polymers, 64, 548-552.

[74]   Wang, S., Chen, F., Wu, J., Wang, Z., Liao, X. and Hu, X. (2007) Optimization of Pectin Extraction Assisted by Microwave from Apple Pomace Using Response Surface Methodology. Journal of Food Engineering, 78, 693-700.

[75]   Wu, J., Peng, K., Zhang, Y., Hu, X., Liao, S., Chen, F., et al. (2009) Comparison of Quality of Apple Pectin between Conventional Solution Extraction and Microwave-Assisted Extraction. Transactions of the Chinese Society of Agricultural Engineering, 25, 350-355.

[76]   Prabasari, I., Pettolino, F., Liao, M.-L. and Bacic, A. (2011) Pectic Polysaccharides from Mature Orange (Citrus sinensis) Fruit Albedo Cell Walls: Sequential Extraction and Chemical Characterization. Carbohydrate Polymers, 84, 484-494.

[77]   Guo, X., Han, D., Xi, H., Rao, L., Liao, X., Hu, X., et al. (2012) Extraction of Pectin from Navel Orange Peel Assisted by Ultra-High Pressure, Microwave or Traditional Heating: A Comparison. Carbohydrate Polymers, 88, 441-448.

[78]   Kratchanova, M., Pavlova, E. and Panchev, I. (2004) The Effect of Microwave Heating of Fresh Orange Peels on the Fruit Tissue and Quality of Extracted Pectin. Carbohydrate Polymers, 56, 181-185.

[79]   Godin, B., Agneessens, R., Gofflot, S., Lamaudière, S., Sinnaeve, G., Gerin, P.A., et al. (2011) Revue bibliographique sur les méthodes d’analyse des polysaccharides structuraux des biomasses lignocellulosiques. Biotechnologie, Agro- nomie, Société et Environnement, 15, 165-182.

[80]   Favela-Torres, E., Volke-Sepúlveda, T. and Viniegra-González, G. (2006) Production of Hydrolytic Depolymerising Pectinases. Food Technology and Biotechnology, 44, 221.

[81]   Sakai, T., Sakamoto, T., Hallaert, J. and Vandamme, E.J. (1993) Pectin, Pectinase, and Protopectinase: Production, Properties, and Applications. Advances in Applied Microbiology, 39, 213-294.

[82]   Alkorta, I., Garbisu, C., Llama, M.J. and Serra, J.L. (1998) Industrial Applications of Pectic Enzymes: A Review. Process Biochemistry, 33, 21-28.

[83]   Jayani, R.S., Saxena, S. and Gupta, R. (2005) Microbial Pectinolytic Enzymes: A Review. Process Biochemistry, 40, 2931-2944.

[84]   Pauly, M., Qin, Q., Greene, H., Albersheim, P., Darvill, A. and York, W.S. (2001) Changes in the Structure of Xyloglucan during Cell Elongation. Planta, 212, 842-850.

[85]   Byg, I., Diaz, J., Ogendal, L.H., Harholt, J., Jorgensen, B., Rolin, C., et al. (2012) Large-Scale Extraction of Rhamnogalacturonan I from Industrial Potato Waste. Food Chemistry, 131, 1207-1216.

[86]   Wise, L.E. and Ratliff, E.K. (1947) Quantitative Isolation of Hemicelluloses and Summative Analysis of Wood. Analytical Chemistry, 19, 459-462.

[87]   Norris, F.W. and Preece, I.A. (1930) Studies on Hemicelluloses: The Hemicelluloses of Wheat Bran. Biochemical Journal, 24, 59.

[88]   Lawther, J.M., Sun, R. and Banks, W.B. (1996) Effects of Extraction Conditions and Alkali Type on Yield and Composition of Wheat Straw Hemicellulose. Journal of Applied Polymer Science, 60, 1827-1837.<1827::AID-APP6>3.0.CO;2-N

[89]   Rutenberg, M.W. and William, H. (1957) Process for Extraction of Hemicellulose. Google Patents.

[90]   Doner, L.W. and Hicks, K.B. (1997) Isolation of Hemicellulose from Corn Fiber by Alkaline Hydrogen Peroxide Extraction. Cereal Chemistry Journal, 74, 176-181.

[91]   Sjostrom, E. and Alén, R. (1998) Analytical Methods in Wood Chemistry, Pulping, and Papermaking. Springer, New York, 37-77.

[92]   Chanliaud, E., Saulnier, L. and Thibault, J.-F. (1995) Alkaline Extraction and Characterisation of Heteroxylans from Maize Bran. Journal of Cereal Science, 21, 195-203.

[93]   Sun, R.C. and Tomkinson, J. (2002) Characterization of Hemicelluloses Obtained by Classical and Ultrasonically Assisted Extractions from Wheat Straw. Carbohydrate Polymers, 50, 263-271.

[94]   Hagglund, E., Lindberg, B. and McPherson, J. (1956) Dimethylsulphoxide, a Solvent for Hemicelluloses. Acta Chemica Scandinavica, 10, 1160-1164.

[95]   Buranov, A.U. and Mazza, G. (2010) Extraction and Characterization of Hemicelluloses from Flax Shives by Different Methods. Carbohydrate Polymers, 79, 17-25.

[96]   Hromadkova, Z., Kováciková, J. and Ebringerová, A. (1999) Study of the Classical and Ultrasound-Assisted Extraction of the Corn Cob Xylan. Industrial Crops and Products, 9, 101-109.

[97]   Janker-Obermeier, I., Sieber, V., Faulstich, M. and Schieder, D. (2012) Solubilization of Hemicellulose and Lignin from Wheat Straw through Microwave-Assisted Alkali Treatment. Industrial Crops and Products, 39, 198-203.

[98]   Krawczyk, H., Persson, T., Andersson, A. and Jonsson, A.-S. (2008) Isolation of Hemicelluloses from Barley Husks. Food and Bioproducts Processing, 86, 31-36.

[99]   Filho, E.X.F. (1998) Hemicellulase and Biotechnology. S. G. Pandalai.

[100]   Reilly, P.J. (1981) Xylanases: Structure and Function. Trends in the Biology of Fermentations for Fuels and Chemicals. Springer, 111-129.

[101]   Collins, T., Gerday, C. and Feller, G. (2005) Xylanases, Xylanase Families and Extremophilic Xylanases. FEMS Microbiology Reviews, 29, 3-23.

[102]   Wyman, C.E., Decker, S.R., Himmel, M.E., Brady, J.W., Skopec, C.E. and Viikari, L. (2005) Hydrolysis of Cellulose and Hemicellulose. Polysaccharides: Structural Diversity and Functional Versatility, 1, 1023-1062.

[103]   Dhawan, S. and Kaur, J. (2007) Microbial Mannanases: An Overview of Production and Applications. Critical Reviews in Biotechnology, 27, 197-216.

[104]   Palm, M. and Zacchi, G. (2003) Extraction of Hemicellulosic Oligosaccharides from Spruce Using Microwave Oven or Steam Treatment. Biomacromolecules, 4, 617-623.

[105]   Pepper, J.M., Baylis, P.E.T. and Adler, E. (1959) The Isolation and Properties of Lignins Obtained by the Acidolysis of Spruce and Aspen Woods in Dioxane-Water Medium. Canadian Journal of Chemistry, 37, 1241-1248.

[106]   Jaaskelainen, A.S., Sun, Y., Argyropoulos, D.S., Tamminen, T. and Hortling, B. (2003) The Effect of Isolation Method on the Chemical Structure of Residual Lignin. Wood Science and Technology, 37, 91-102.

[107]   Mortha, G., Nikandrov, A., Robert, D., Lachenal, D. and Zaroubine, M.Y. (2001) Characteristics of Lignins Extracted from Oak Wood and Kraft Pulps by Acetic Acid/ZnCl2 Acidolysis: Comparison with Other Methods. Proceedings of 11th International Symposium on Wood and Pulping Chemistry, Nice, 11-14 June 2001, 245-250.

[108]   Evtuguin, D.V., Neto, C.P., Silva, A.M., Domingues, P.M., Amado, F.M., Robert, D., et al. (2001) Comprehensive Study on the Chemical Structure of Dioxane Lignin from Plantation Eucalyptus globulus Wood. Journal of Agricultural and Food Chemistry, 49, 4252-42561.

[109]   Guerra, A., Filpponen, I., Lucia, L.A., Saquing, C., Baumberger, S. and Argyropoulos, D.S. (2006) Toward a Better Understanding of the Lignin Isolation Process from Wood. Journal of Agricultural and Food Chemistry, 54, 5939- 5947.

[110]   Guerra, A., Filpponen, I., Lucia, L.A. and Argyropoulos, D.S. (2006) Comparative Evaluation of Three Lignin Isolation Protocols for Various Wood Species. Journal of Agricultural and Food Chemistry, 54, 9696-9705.

[111]   Pew, J.C. and Weyna, P. (1962) Fine Grinding, Enzyme Digestion, and the Lignin-Cellulose Bond in Wood. Tappi, 45, 247-256.

[112]   Balakshin, M.Y., Capanema, E.A. and Chang, H.-M. (2008) Recent Advances in the Isolation and Analysis of Lignins and Lignin-Carbohydrate Complexes. In: Fellow TQHBS, Characterization of Lignocellulosic Materials, Blackwell Publishing Ltd., 148-170.

[113]   Wu, S. and Argyropoulos, D.S. (2003) An Improved Method for Isolating Lignin in High Yield and Purity. Journal of Pulp and Paper Science, 29, 235-240.

[114]   Sun, X.-F., Jing, Z., Fowler, P., Wu, Y. and Rajaratnam, M. (2011) Structural Characterization and Isolation of Lignin and Hemicelluloses from Barley Straw. Industrial Crops and Products, 33, 588-598.

[115]   Kilpelainen, I., Xie, H., King, A., Granstrom, M., Heikkinen, S. and Argyropoulos, D.S. (2007) Dissolution of Wood in Ionic Liquids. Journal of Agricultural and Food Chemistry, 55, 9142-9148.

[116]   Yang, D., Zhong, L.-X., Yuan, T.-Q., Peng, X.-W. and Sun, R.-C. (2013) Studies on the Structural Characterization of Lignin, Hemicelluloses and Cellulose Fractionated by Ionic Liquid Followed by Alkaline Extraction from Bamboo. Industrial Crops and Products, 43, 141-149.

[117]   Prado, R., Erdocia, X. and Labidi, J. (2013) Lignin Extraction and Purification with Ionic Liquids. Journal of Chemical Technology and Biotechnology, 88, 1248-1257.

[118]   Muhammad, N., Man, Z. and Bustam Khalil, M.A. (2012) Ionic liquid—A Future Solvent for the Enhanced Uses of Wood Biomass. European Journal of Wood and Wood Products, 70, 125-133.

[119]   Chanzy, H., Peguy, A., Chaunis, S. and Monzie, P. (1980) Oriented Cellulose Films and Fibers from a Mesophase System. Journal of Polymer Science: Polymer Physics Edition, 18, 1137-1144.

[120]   McCormick, C.L., Callais, P.A. and Hutchinson Jr., B.H. (1985) Solution Studies of Cellulose in Lithium Chloride and N, N-Dimethylacetamide. Macromolecules, 18, 2394-2401.

[121]   Cai, J. and Zhang, L. (2005) Rapid Dissolution of Cellulose in LiOH/Urea and NaOH/Urea Aqueous Solutions. Macro- molecular Bioscience, 5, 539-548.

[122]   Nishio, Y., Roy, S.K. and Manley, R.S.J. (1987) Blends of Cellulose with Polyacrylonitrile Prepared from N, N-Dimethylacetamide-Lithium Chloride Solutions. Polymer, 28, 1385-1390.

[123]   Isogai, A. and Atalla, R.H. (1998) Dissolution of Cellulose in Aqueous NaOH Solutions. Cellulose, 5, 309-319.

[124]   Dawsey, T.R. and McCormick, C.L. (1990) The Lithium Chloride/Dimethylacetamide Solvent for Cellulose: A Literature Review. Journal of Macromolecular Science—Reviews in Macromolecular Chemistry and Physics, 30, 405-440.

[125]   Seddon, K.R. (1997) Ionic Liquids for Clean Technology. Journal of Chemical Technology and Biotechnology, 68, 351-356.<351::AID-JCTB613>3.0.CO;2-4

[126]   Sheldon, R.A., Lau, R.M., Sorgedrager, M.J., van Rantwijk, F. and Seddon, K.R. (2002) Biocatalysis in Ionic Liquids. Green Chemistry, 4, 147-151.

[127]   Lee, S.H. and Lee, S.B. (2005) The Hildebrand Solubility Parameters, Cohesive Energy Densities and Internal Ener- gies of 1-Alkyl-3-Methylimidazolium-Based Room Temperature Ionic Liquids. Chemical Communications, 2005, 3469-3471.

[128]   Xie, H., Zhang, S. and Li, S. (2006) Chitin and Chitosan Dissolved in Ionic Liquids as Reversible Sorbents of CO2. Green Chemistry, 8, 630-633.

[129]   Vesa, M. and Reijo, A. (WO 017001 A1) Dissolution Method for Lignocellulosic Materials.

[130]   Fort, D.A., Remsing, R.C., Swatloski, R.P., Moyna, P., Moyna, G. and Rogers, R.D. (2007) Can Ionic Liquids Dissolve wood? Processing and Analysis of Lignocellulosic Materials with 1-n-Butyl-3-Methylimidazolium Chloride. Green Chemistry, 9, 63.

[131]   Lan, W., Liu, C.-F. and Sun, R.-C. (2011) Fractionation of Bagasse into Cellulose, Hemicelluloses, and Lignin with Ionic Liquid Treatment Followed by Alkaline Extraction. Journal of Agricultural and Food Chemistry, 59, 8691-8701.

[132]   Sun, N., Rahman, M., Qin, Y., Maxim, M.L., Rodríguez, H. and Rogers, R.D. (2009) Complete Dissolution and Partial Delignification of Wood in the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate. Green Chemistry, 11, 646.

[133]   Miyafuji, H., Miyata, K., Saka, S., Ueda, F. and Mori, M. (2009) Reaction Behavior of Wood in an Ionic Liquid, 1-Ethyl-3-Methylimidazolium Chloride. Journal of Wood Science, 55, 215-219.

[134]   Singh, S., Simmons, B.A. and Vogel, K.P. (2009) Visualization of Biomass Solubilization and Cellulose Regeneration during Ionic Liquid Pretreatment of Switchgrass. Biotechnology and Bioengineering, 104, 68-75.

[135]   Abe, M., Yamanaka, S., Yamada, H., Yamada, T. and Ohno, H. (2015) Almost Complete Dissolution of Woody Biomass with Tetra-n-Butylphosphonium Hydroxide Aqueous Solution at 60℃. Green Chemistry, 17, 4432-4438.

[136]   Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., et al. (2005) Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass. Bioresource Technology, 96, 673-686.

[137]   Yan, Y., Li, X., Wan, M., Chen, J., Li, S., Cao, M., et al. (2015) Effect of Extraction Methods on Property and Bioactivity of Water-Soluble Polysaccharides from Amomum villosum. Carbohydrate Polymers, 117, 632-635.

[138]   Wang, J., Zhang, J., Zhao, B., Wang, X., Wu, Y. and Yao, J. (2010) A Comparison Study on Microwave-Assisted Extraction of Potentilla anserina L. Polysaccharides with Conventional Method: Molecule Weight and Antioxidant Activities Evaluation. Carbohydrate Polymers, 80, 84-93.

[139]   Mishra, A., Mishra, S., Bhargav, S., Bhargava, C.S. and Thakur, M. (2014) Microwave Assisted Extraction, Antioxidant Potential and Chromatographic Studies of Some Rasayana Drugs. Chinese Journal of Integrative Medicine, 21, 1-7.

[140]   Zeng, H., Zhang, Y., Lin, S., Jian, Y., Miao, S. and Zheng, B. (2015) Ultrasonic-Microwave Synergistic Extraction (UMSE) and Molecular Weight Distribution of Polysaccharides from Fortunella margarita (Lour.) Swingle. Separation and Purification Technology, 144, 97-106.

[141]   Fan, T., Hu, J., Fu, L. and Zhang, L. (2015) Optimization of Enzymolysis-Ultrasonic Assisted Extraction of Polysaccharides from Momordica charabtia L. by Response Surface Methodology. Carbohydrate Polymers, 115, 701-706.

[142]   Puri, M., Sharma, D. and Barrow, C.J. (2012) Enzyme-Assisted Extraction of Bioactives from Plants. Trends in Biotechnology, 30, 37-44.

[143]   Gornall, A.G., Bardawill, C.J. and David, M.M. (1949) Determination of Serum Proteins by Means of the Biuret Reaction.

[144]   Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., et al. (1951) Protein Measurement with the Folin Phenol Reagent. Journal of Biological Chemistry, 193, 265-275.

[145]   Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M., et al. (1985) Measurement of Protein Using Bicinchoninic Acid. Analytical Biochemistry, 150, 76-85.

[146]   Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72, 248-254.

[147]   Stoscheck, C.M. (1987) Protein Assay Sensitive at Nanogram Levels. Analytical Biochemistry, 160, 301-305.

[148]   Watanabe, N., Kamei, S., Ohkubo, A., Yamanaka, M., Ohsawa, S., Makino, K., et al. (1986) Urinary Protein as Measured with a Pyrogallol Red-Molybdate Complex, Manually and in a Hitachi 726 Automated Analyzer. Clinical Chemistry, 32, 1551-1554.

[149]   Fujita, Y., Mori, I. and Kitano, S. (1984) Determination of Proteins by Using the Color Reaction with Pyrocatechol Violet-Molybdenum (VI) Complex. Chemical & Pharmaceutical Bulletin, 32, 4161-4164.

[150]   Antharavally, B.S., Mallia, K.A., Rangaraj, P., Haney, P. and Bell, P.A. (2009) Quantitation of Proteins Using a Dye-Metal-Based Colorimetric Protein Assay. Analytical Biochemistry, 385, 342-425.

[151]   Dishe, Z. and Popper, H. (1926) Uber Eine Neue Kolorimetrischen Mikrobestim Mungs Methode der Kohlehydrate in Organen und Korpersaften. Biologische Zeitung, 175, 371-411.

[152]   Tillmans, J. and Philippi, K. (1929) The Carbohydrate Content of the Important Proteins of Foodstuffs and a Colorimetric Procedure for the Determination of Nitrogen-Free Sugar in Protein. Biochemische Zeitschrift, 215, 36-60.

[153]   Dische, Z. (1947) A New Specific Color Reaction of Hexuronic Acids. Journal of Biological Chemistry, 167, 189-198.

[154]   Bitter, T. and Muir, H.M. (1962) A Modified Uronic Acid Carbazole Reaction. Analytical Biochemistry, 4, 330-334.

[155]   Monsigny, M., Petit, C. and Roche, A.-C. (1988) Colorimetric Determination of Neutral Sugars by a Resorcinol Sulfuric Acid Micromethod. Analytical Biochemistry, 175, 525-530.

[156]   Blumenkrantz, N. and Asboe-Hansen, G. (1973) New Method for Quantitative Determination of Uronic Acids. Analytical Biochemistry, 54, 484-489.

[157]   Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28, 350-356.

[158]   Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S.-I. and Lee, Y.C. (2005) Carbohydrate Analysis by a Phenol-Sulfuric Acid Method in Microplate Format. Analytical Biochemistry, 339, 69-72.

[159]   Montreuil, J. and Spik, G. (1963) Microdosage des glucides: Méthodes colorimétriques de dosage des glucides totaux. Faculté des Sciences de Lille.

[160]   Wicker, L. and Leiting, V.A. (1995) Microscale Galacturonic Acid Assay. Analytical Biochemistry, 229, 148-50.

[161]   Johnson, D.B., Moore, W.E. and Zank, L.C. (1961) The Spectrophotometric Determination of Lignin in Small Wood Samples. Tappi, 44, 793-798.

[162]   Morrison, I. (1972) Improvements in the Acetyl Bromide Technique to Determine Lignin and Digestibility and Its Application to Legumes. Journal of the Science of Food and Agriculture, 23, 1463-1469.

[163]   Morrison, I.M. (1972) A Semi-Micro Method for the Determination of Lignin and Its Use in Predicting the Digestibility of Forage Crops. Journal of the Science of Food and Agriculture, 23, 455-463.

[164]   Fengel, D. and Wegener, G. (1983) Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter.

[165]   Moreira-Vilar, F.C., de Cássia Siqueira-Soares, R., Finger-Teixeira, A., de Oliveira, D.M., Ferro, A.P., da Rocha, G.J., et al. (2014) The Acetyl Bromide Method Is Faster, Simpler and Presents Best Recovery of Lignin in Different Herbaceous Tissues than Klason and Thioglycolic Acid Methods. PLoS ONE, 9, e110000.

[166]   Kline, L.M., Hayes, D.G., Womac, A.R. and Labbe, N. (2010) Simplified Determination of Lignin Content in Hard and Soft Woods via UV-Spectrophotometric Analysis of Biomass Dissolved in Ionic Liquids. BioResources, 5, 1366-1383.

[167]   Nkansah, K. and Dawson-Andoh, B. (2010) Rapid Characterization of Biomass Using Fluorescence Spectroscopy Coupled with Multivariate Data Analysis. II. Northern Red Oak (Quercus rubra). Journal of Renewable and Sustainable Energy, 2, Article ID: 043101.

[168]   Nkansah, K. and Dawson-Andoh, B. (2010) Rapid Characterization of Biomass Using Fluorescence Spectroscopy Coupled with Multivariate Data Analysis. I. Yellow Poplar (Liriodendron tulipifera L.). Journal of Renewable and Sustainable Energy, 2, Article ID: 023103.

[169]   Schulz, H. and Baranska, M. (2007) Identification and Quantification of Valuable Plant Substances by IR and Raman Spectroscopy. Vibrational Spectroscopy, 43, 13-25.

[170]   Sene, C.F., McCann, M.C., Wilson, R.H. and Grinter, R. (1994) Fourier-Transform Raman and Fourier-Transform Infrared Spectroscopy (An Investigation of Five Higher Plant Cell Walls and Their Components). Plant Physiology, 106, 1623-1631.

[171]   Larkin, P. (2011) Infrared and Raman Spectroscopy; Principles and Spectral Interpretation. Elsevier, Amsterdam, 1-7.

[172]   Atalla, R.H. and Dimick, B.E. (1975) Raman-Spectral Evidence for Differences between the Conformations of Cellulose I and Cellulose II. Carbohydrate Research, 39, C1-C3.

[173]   Fengel, D. and Ludwig, M. (1991) Moglichkeiten und Grenzen der FTIR-Spektroskopie bei der Charakterisierung von Cellulose. I: Vergleich von Verschiedenen Cellulosefasern und Bakterien-Cellulose. Das Papier, 45, 45-51.

[174]   Langkilde, F.W. and Svantesson, A. (1995) Identification of Celluloses with Fourier-Transform (FT) Mid-Infrared, FT-Raman and Near-Infrared Spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 13, 409-414.

[175]   Agarwal, U.P. (2014) 1064 nm FT-Raman Spectroscopy for Investigations of Plant Cell Walls and Other Biomass Materials. Frontiers in Plant Science, 5.

[176]   Hulleman, S.H., van Hazendonk, J.M. and van Dam, J.E. (1994) Determination of Crystallinity in Native Cellulose from Higher Plants with Diffuse Reflectance Fourier Transform Infrared Spectroscopy. Carbohydrate Research, 261, 163-172.

[177]   Rowe, R.C., McKillop, A.G. and Bray, D. (1994) The Effect of Batch and Source Variation on the Crystallinity of Microcrystalline Cellulose. International Journal of Pharmaceutics, 101, 169-172.

[178]   Kataoka, Y. and Kondo, T. (1998) FT-IR Microscopic Analysis of Changing Cellulose Crystalline Structure during Wood Cell Wall Formation. Macromolecules, 31, 760-764.

[179]   Cael, J.J., Gardner, K.H., Koenig, J.L. and Blackwell, J. (1975) Infrared and Raman Spectroscopy of Carbohydrates. Paper V. Normal Coordinate Analysis of Cellulose I. The Journal of Chemical Physics, 62, 1145-1153.

[180]   Marchessault, R.H., Sundararajan, P.R., et al. (1983) Cellulose. The Polysaccharides, 2, 11-95.

[181]   Mathlouthi, M. and Koenig, J.L. (1986) Vibrational Spectra of Carbohydrates. Advances in Carbohydrate Chemistry and Biochemistry, 44, 7-89.

[182]   Stewart, D. and Morrison, I.M. (1992) Ft-ir Spectroscopy as a Tool for the Study of Biological and Chemical Treatments of Barley Straw. Journal of the Science of Food and Agriculture, 60, 431-436.

[183]   Sun, R.C. and Hughes, S. (1999) Fractional Isolation and Physico-Chemical Characterization of Alkali-Soluble Polysaccharides from Sugar Beet Pulp. Carbohydrate Polymers, 38, 273-281.

[184]   Sun, R. and Hughes, S. (1998) Fractional Extraction and Physico-Chemical Characterization of Hemicelluloses and Cellulose from Sugar Beet Pulp. Carbohydrate Polymers, 36, 293-299.

[185]   Sun, R., Fang, J.M., Rowlands, P. and Bolton, J. (1998) Physicochemical and Thermal Characterization of Wheat Straw Hemicelluloses and Cellulose. Journal of Agricultural and Food Chemistry, 46, 2804-2809.

[186]   Sun, R., Lawther, J.M. and Banks, W.B. (1996) Fractional and Structural Characterization of Wheat Straw Hemicelluloses. Carbohydrate Polymers, 29, 325-331.

[187]   Filippov, M.P. (1992) Practical Infrared Spectroscopy of Pectic Substances. Food Hydrocolloids, 6, 115-142.

[188]   Engelsen, S.B. and Norgaard, L. (1996) Comparative Vibrational Spectroscopy for Determination of Quality Parameters in Amidated Pectins as Evaluated by Chemometrics. Carbohydrate Polymers, 30, 9-24.

[189]   Coimbra, M.A., Barros, A., Barros, M., Rutledge, D.N. and Delgadillo, I. (1998) Multivariate Analysis of Uronic Acid and Neutral Sugars in Whole Pectic Samples by FT-IR Spectroscopy. Carbohydrate Polymers, 37, 241-248.

[190]   Chatjigakis, A.K., Pappas, C., Proxenia, N., Kalantzi, O., Rodis, P. and Polissiou, M. (1998) FT-IR Spectroscopic Determination of the Degree of Esterification of Cell Wall Pectins from Stored Peaches and Correlation to Textural Changes. Carbohydrate Polymers, 37, 395-408.

[191]   Barros, A.S., Mafra, I., Ferreira, D., Cardoso, S., Reis, A., Da Silva, J.L., et al. (2002) Determination of the Degree of Methylesterification of Pectic Polysaccharides by FT-IR Using an Outer Product PLS1 Regression. Carbohydrate Polymers, 50, 85-94.

[192]   Manrique, G.D. and Lajolo, F.M. (2002) FT-IR Spectroscopy as a Tool for Measuring Degree of Methyl Esterification in Pectins Isolated from Ripening Papaya Fruit. Postharvest Biology and Technology, 25, 99-107.

[193]   Synytsya, A., Copiková, J., Matějka, P. and Machovic, V. (2003) Fourier Transform Raman and Infrared Spectroscopy of Pectins. Carbohydrate Polymers, 54, 97-106.

[194]   Kacurakova, M., Capek, P., Sasinkova, V., Wellner, N. and Ebringerova, A. (2000) FT-IR Study of Plant Cell Wall Model Compounds: Pectic Polysaccharides and Hemicelluloses. Carbohydrate Polymers, 43, 195-203.

[195]   Kacuráková, M. and Wilson, R.H. (2001) Developments in Mid-Infrared FT-IR Spectroscopy of Selected Carbo- hydrates. Carbohydrate Polymers, 44, 291-303.

[196]   Lupoi, J.S., Singh, S., Simmons, B.A. and Henry, R.J. (2014) Assessment of Lignocellulosic Biomass Using Analytical Spectroscopy: An Evolution to High-Throughput Techniques. BioEnergy Research, 7, 1-23.

[197]   Bjarnestad, S. and Dahlman, O. (2002) Chemical Compositions of Hardwood and Softwood Pulps Employing Photoacoustic Fourier Transform Infrared Spectroscopy in Combination with Partial Least-Squares Analysis. Analytical Chemistry, 74, 5851-5858.

[198]   Liu, L., Ye, X.P., Womac, A.R. and Sokhansanj, S. (2010) Variability of Biomass Chemical Composition and Rapid Analysis Using FT-NIR Techniques. Carbohydrate Polymers, 81, 820-829.

[199]   Jaaskelainen, A.-S., Saariaho, A.-M. and Vuorinen, T. (2005) Quantification of Lignin and Hexenuronic Acid in Bleached Hardwood Kraft Pulps: A New Calibration Method for UVRR Spectroscopy and Evaluation of the Con- ventional Methods. Journal of Wood Chemistry and Technology, 25, 51-65.

[200]   Agarwal, U.P. (2011) Lignin Quantitation by FT-Raman Spectroscopy. Proceedings 16th International Symposium on Wood, Fiber and Pulping Chemistry, Tianjin, 8-10 June 2011, 170-173.

[201]   Sun, L., Varanasi, P., Yang, F., Loqué, D., Simmons, B.A. and Singh, S. (2012) Rapid Determination of Syringyl: Guaiacyl Ratios Using FT-Raman Spectroscopy. Biotechnology and Bioengineering, 109, 647-656.

[202]   Ona, T., Sonoda, T., Ito, K., Shibatal, M., Katayama, T., Kato, T., et al. (1998) Non-Destructive Determination of Lig- nin Syringyl/Guaiacyl Monomeric Composition in Native Wood by Fourier Transform Raman Spectroscopy. Journal of Wood Chemistry and Technology, 18, 43-51.

[203]   Saariaho, A.-M., Argyropoulos, D.S., Jaaskelainen, A.-S. and Vuorinen, T. (2005) Development of the Partial Least Squares Models for the Interpretation of the UV Resonance Raman Spectra of Lignin Model Compounds. Vibrational Spectroscopy, 37, 111-121.

[204]   Saariaho, A.-M., Jaaskelainen, A.-S., Nuopponen, M. and Vuorinen, T. (2003) Ultra Violet Resonance Raman Spec- troscopy in Lignin Analysis: Determination of Characteristic Vibrations of p-Hydroxyphenyl, Guaiacyl, and Syringyl Lignin Structures. Applied Spectroscopy, 57, 58-66.

[205]   Jose, C., Gutiérrez, A., Rodriguez, I.M., Ibarra, D. and Martinez, A.T. (2007) Composition of Non-Woody Plant Lignins and Cinnamic Acids by Py-GC/MS, Py/TMAH and FT-IR. Journal of Analytical and Applied Pyrolysis, 79, 39-46.

[206]   Casas, A., Oliet, M., Alonso, M.V. and Rodriguez, F. (2012) Dissolution of Pinus radiata and Eucalyptus globulus Woods in Ionic Liquids under Microwave Radiation: lignin Regeneration and Characterization. Separation and Purification Technology, 97, 115-122.

[207]   Kihara, M., Takayama, M., Wariishi, H. and Tanaka, H. (2002) Determination of the Carbonyl Groups in Native Lignin Utilizing Fourier Transform Raman Spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58, 2213-2221.

[208]   Boudart, G., Jamet, E., Rossignol, M., Lafitte, C., Borderies, G., Jauneau, A., et al. (2005) Cell Wall Proteins in Apoplastic Fluids of Arabidopsis thaliana Rosettes: Identification by Mass Spectrometry and Bioinformatics. Proteomics, 5, 212-221.

[209]   Bayer, E.M., Bottrill, A.R., Walshaw, J., Vigouroux, M., Naldrett, M.J., Thomas, C.L., et al. (2006) Arabidopsis Cell Wall Proteome Defined Using Multidimensional Protein Identification Technology. Proteomics, 6, 301-311.

[210]   Minic, Z., Jamet, E., Négroni, L., Der Garabedian, P.A., Zivy, M. and Jouanin, L. (2007) A Sub-Proteome of Arabi- dopsis thaliana Mature Stems Trapped on Concanavalin A Is Enriched in Cell Wall Glycoside Hydrolases. Journal of Experimental Botany, 58, 2503-2512.

[211]   Casasoli, M., Spadoni, S., Lilley, K.S., Cervone, F., De Lorenzo, G. and Mattei, B. (2008) Identification by 2-D DIGE of Apoplastic Proteins Regulated by Oligogalacturonides in Arabidopsis thaliana. Proteomics, 8, 1042-1054.

[212]   Irshad, M., Canut, H., Borderies, G., Pont-Lezica, R. and Jamet, E. (2008) A New Picture of Cell Wall Protein Dynamics in Elongating Cells of Arabidopsis thaliana: Confirmed Actors and Newcomers. BMC Plant Biology, 8, 94.

[213]   Gevaert, K. and Vandekerckhove, J. (2000) Protein Identification Methods in Proteomics. Electrophoresis, 21, 1145- 1154.<1145::AID-ELPS1145>3.0.CO;2-Z

[214]   Aebersold, R. and Mann, M. (2003) Mass Spectrometry-Based Proteomics. Nature, 422, 198-207.

[215]   Petersen, J., Rogowska-Wrzesinska, A. and Jensen, O.N. (2013) Functional Proteomics of Barley and Barley Chloro- plasts-Strategies, Methods and Perspectives. Frontiers in Plant Science, 4.

[216]   Seidler, J., Zinn, N., Boehm, M.E. and Lehmann, W.D. (2010) De novo Sequencing of Peptides by MS/MS. Proteo- mics, 10, 634-649.

[217]   Bond, M.R. and Kohler, J.J. (2007) Chemical Methods for Glycoprotein Discovery. Current Opinion in Chemical Biology, 11, 52-58.

[218]   Schmidt, A., Kellermann, J. and Lottspeich, F. (2005) A Novel Strategy for Quantitative Proteomics Using Isotope-Coded Protein Labels. Proteomics, 5, 4-15.

[219]   Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., et al. (2004) Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-Reactive Isobaric Tagging Reagents. Molecular & Cellular Proteomics, 3, 1154-1169.

[220]   Wiese, S., Reidegeld, K.A., Meyer, H.E. and Warscheid, B. (2007) Protein Labeling by iTRAQ: A New Tool for Quantitative Mass Spectrometry in Proteome Research. Proteomics, 7, 340-350.

[221]   Ong, S.-E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., et al. (2002) Stable Isotope Label- ing by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Molecular & Cellular Proteomics, 1, 376-386.

[222]   Bindschedler, L.V., Palmblad, M. and Cramer, R. (2008) Hydroponic Isotope Labelling of Entire Plants (HILEP) for Quantitative Plant Proteomics; an Oxidative Stress Case Study. Phytochemistry, 69, 1962-1972.

[223]   Gouw, J.W., Tops, B.B., Mortensen, P., Heck, A.J. and Krijgsveld, J. (2008) Optimizing Identification and Quantitation of 15N-Labeled Proteins in Comparative Proteomics. Analytical Chemistry, 80, 7796-803.

[224]   Reinhold, B.B., Chan, S.Y., Reuber, T.L., Marra, A., Walker, G.C. and Reinhold, V.N. (1994) Detailed Structural Characterization of Succinoglycan, the Major Exopolysaccharide of Rhizobium Meliloti Rm1021. Journal of Bacteriology, 176, 1997-2002.

[225]   Reinhold, B.B., Hauer, C.R., Plummer, T.H. and Reinhold, V.N. (1995) Detailed Structural Analysis of a Novel, Specific O-Linked Glycan from the Prokaryote Flavobacterium meningosepticum. Journal of Biological Chemistry, 270, 13197-13203.

[226]   Reinhold, V.N., Reinhold, B.B. and Chan, S. (1996) Carbohydrate Sequence Analysis by Electrospray Ionization-Mass Spectrometry. Methods in Enzymology, 271, 377-402.

[227]   Todd, J.F. and March, R.E. (1999) A Retrospective Review of the Development and Application of the Quadrupole Ion Trap Prior to the Appearance of Commercial Instruments. International Journal of Mass Spectrometry, 190, 9-35.

[228]   Park, Y. and Lebrilla, C.B. (2005) Application of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry to Oligosaccharides. Mass Spectrometry Reviews, 24, 232-64.

[229]   Lerouxel, O., Choo, T.S., Séveno, M., Usadel, B., Faye, L., Lerouge, P., et al. (2002) Rapid Structural Phenotyping of Plant Cell Wall Mutants by Enzymatic Oligosaccharide Fingerprinting. Plant Physiology, 130, 1754-1763.

[230]   Obel, N., Erben, V. and Pauly, M. (2006) Functional Wall Glycomics through Oligosaccharide Mass Profiling. The Science and Lore of the Plant Cell Wall Brown Walker Press, Boca Raton, 258-266.

[231]   Obel, N., Erben, V., Schwarz, T., Kuhnel, S., Fodor, A. and Pauly, M. (2009) Microanalysis of Plant Cell Wall Polysaccharides. Molecular Plant, 2, 922-932.

[232]   Reale, S., Di Tullio, A., Spreti, N. and De Angelis, F. (2004) Mass Spectrometry in the Biosynthetic and Structural Investigation of Lignins. Mass Spectrometry Reviews, 23, 87-126.

[233]   Obst, J.R. (1983) Analytical Pyrolysis of Hardwood and Softwood Lignins and Its Use in Lignin-Type Determination of Hardwood Vessel Elements. Journal of Wood Chemistry and Technology, 3, 377-397.

[234]   Meier, D. and Faix, O. (1992) Pyrolysis-Gas Chromatography-Mass Spectrometry. Springer, Berlin Heidelberg, 177- 199.

[235]   Galletti, G.C., Bocchini, P., Smacchia, A.M. and Reeves III, J.B. (1996) Monitoring Phenolic Composition of Maturing Maize Stover by High Performance Liquid Chromatography and Pyrolysis/Gas Chromatography/Mass Spectrometry. Journal of the Science of Food and Agriculture, 71, 1-9.<1::AID-JSFA535>3.0.CO;2-A

[236]   Freudenberg, K. and Lautsch, W. (1939) Zur Konstitution des Fichtenlignins. Naturwissenschaften, 27, 227-228.

[237]   Freudenberg, K., Lautsch, W. and Engler, K. (1940) Die bildung von vanillin aus fichtenlignin. Berichte Der Deutschen Chemischen Gesellschaft (A and B Series), 73, 167-171.

[238]   Chen, C.-L. (1992) Nitrobenzene and Cupric Oxide Oxidations. Springer, Berlin Heidelberg, 301-321.

[239]   Hedges, J.I. and Mann, D.C. (1979) The Characterization of Plant Tissues by Their Lignin Oxidation Products. Geochimica et Cosmochimica Acta, 43, 1803-1807.

[240]   Freudenberg, K. and Müller, H.F. (1938) Quecksilber und Jod enthaltende Derivate des Fichtenlignins. Berichte Der Deutschen Chemischen Gesellschaft (A and B Series), 71, 2500-2504.

[241]   Hyatt, J.A. (1989) Hydroxypropyl Lignins and Model Compounds: Synthesis and Characterization by Electron-Impact Mass Spectrometry. ACS Symposium Series, Oxford University Press, 425-435.

[242]   Lapierre, C., Monties, B., Rolando, C. and de Chirale, L. (1985) Thioacidolysis of Lignin: Comparison with Acidolysis. Journal of Wood Chemistry and Technology, 5, 277-292.

[243]   Lapierre, C., Rolando, C. and Monties, B. (1983) Characterization of Poplar Lignins Acidolysis Products: Capillary Gas-Liquid and Liquid-Liquid Chromatography of Monomeric Compounds. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 37, 189-198.

[244]   Sarkanen, K.V., Islam, A. and Anderson, C.D. (1992) Ozonation. Springer, Berlin Heidelberg, 387-406.

[245]   Lu, F. and Ralph, J. (1997) Derivatization Followed by Reductive Cleavage (DFRC Method), a New Method for Lignin Analysis: Protocol for Analysis of DFRC Monomers. Journal of Agricultural and Food Chemistry, 45, 2590- 2592.

[246]   Clifford, D.J., Carson, D.M., McKinney, D.E., Bortiatynski, J.M. and Hatcher, P.G. (1995) A New Rapid Technique for the Characterization of Lignin in Vascular Plants: Thermochemolysis with Tetramethylammonium Hydroxide (TMAH). Organic Geochemistry, 23, 169-175.

[247]   De Angelis, F., Fregonese, P. and Verì, F. (1996) Structural Investigation of Synthetic Lignins by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Rapid Communications in Mass Spectrometry, 10, 1304-1308.<1304::AID-RCM591>3.0.CO;2-0

[248]   Evtuguin, D.V., Domingues, P., Amado, F.L., Neto, C.P. and Correia, A.J. (1999) Electrospray Ionization Mass Spectrometry as a Tool for Lignins Molecular Weight and Structural Characterisation. Holzforschung, 53, 525-528.

[249]   Palmblad, M., Gellerstedt, G., et al. (2003) Investigation of Lignin Oligomers Using Electrospray Ionisation Mass Spectrometry. Holzforschung, 57, 37-43.

[250]   Metzger, J.O., Bicke, C., Faix, O., Tuszynski, W., Angermann, R., Karas, M., et al. (1992) Matrix-Assisted Laser Desorption Mass Spectrometry of Lignins. Angewandte Chemie International Edition in English, 31, 762-764.

[251]   Bocchini, P., Galletti, G.C., Seraglia, R., Traldi, P., Camarero, S. and Martinez, A.T. (1996) Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Natural and Synthetic Lignin. Rapid Communications in Mass Spectrometry, 10, 1144-1147.

[252]   Kim, H., Ralph, J. and Akiyama, T. (2008) Solution-State 2D NMR of Ball-Milled Plant Cell Wall Gels in DMSO-d 6. BioEnergy Research, 1, 56-66.

[253]   Davis, E.A., Derouet, C., Herve Du Penhoat, C. and Morvan, C. (1990) Isolation and an N.M.R. Study of Pectins from Flax (Linum usitatissimum L.). Carbohydrate Research, 197, 205-215.

[254]   Newman, R.H., Ha, M.-A. and Melton, L.D. (1994) Solid-State 13C NMR Investigation of Molecular Ordering in the Cellulose of Apple Cell Walls. Journal of Agricultural and Food Chemistry, 42, 1402-1406.

[255]   Foster, T.J. and Ablett, S. (1996) Mobility-Resolved I3C-NMR. Biopolymers, 39, 1-66.

[256]   Duus, J.O., Gotfredsen, C.H. and Bock, K. (2000) Carbohydrate Structural Determination by NMR Spectroscopy: Modern Methods and Limitations. Chemical Reviews, 100, 4589-4614.

[257]   Jarvis, M.C. and McCann, M.C. (2000) Macromolecular Biophysics of the Plant Cell Wall: Concepts and Methodology. Plant Physiology and Biochemistry, 38, 1-13.

[258]   Gurjanov, O.P., Ibragimova, N.N., Gnezdilov, O.I. and Gorshkova, T.A. (2008) Polysaccharides, Tightly Bound to Cellulose in Cell Wall of Flax Bast Fibre: Isolation and Identification. Carbohydrate Polymers, 72, 719-729.

[259]   Dick-Pérez, M., Zhang, Y., Hayes, J., Salazar, A., Zabotina, O.A. and Hong, M. (2011) Structure and Interactions of Plant Cell-Wall Polysaccharides by Two- and Three-Dimensional Magic-Angle-Spinning Solid-State NMR. Biochemistry, 50, 989-1000.

[260]   Hedenstrom, M., Wiklund-Lindstrom, S., Oman, T., Lu, F., Gerber, L., Schatz, P., et al. (2009) Identification of Lignin and Polysaccharide Modifications in Populus Wood by Chemometric Analysis of 2D NMR Spectra from Dissolved Cell Walls. Molecular Plant, 2, 933-942.

[261]   Hall, M., Bansal, P., Lee, J.H., Realff, M.J. and Bommarius, A.S. (2010) Cellulose Crystallinity—A Key Predictor of the Enzymatic Hydrolysis rate. FEBS Journal, 277, 1571-1582.

[262]   Newman, R.H. (2005) Homogeneity in Cellulose Crystallinity between Samples of Pinus radiata Wood. Holzfors- chung, 58, 91-96.

[263]   Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A. and Johnson, D.K. (2010) Research Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnol Biofuels, 3.

[264]   Sathitsuksanoh, N., Zhu, Z., Wi, S. and Zhang, Y.-H.P. (2011) Cellulose Solvent-Based Biomass Pretreatment Breaks Highly Ordered Hydrogen Bonds in Cellulose Fibers of Switchgrass. Biotechnology and Bioengineering, 108, 521-529.

[265]   Lu, F. and Ralph, J. (2003) Non-Degradative Dissolution and Acetylation of Ball-Milled Plant Cell Walls: High-Resolution Solution-State NMR. The Plant Journal, 35, 535-544.

[266]   Ralph, J. and Lu, F. (2004) Cryoprobe 3D NMR of Acetylated Ball-Milled Pine Cell Walls. Organic & Biomolecular Chemistry, 2, 2714-2715.

[267]   Moulthrop, J.S., Swatloski, R.P., Moyna, G. and Rogers, R.D. (2005) High-Resolution 13C NMR Studies of Cellulose and Cellulose Oligomers in Ionic Liquid Solutions. Chemical Communications, 1557-1559.

[268]   Pu, Y., Jiang, N. and Ragauskas, A.J. (2007) Ionic Liquid as a Green Solvent for Lignin. Journal of Wood Chemistry and Technology, 27, 23-33.

[269]   Yelle, D.J., Ralph, J. and Frihart, C.R. (2008) Characterization of Nonderivatized Plant Cell Walls Using High-Resolution Solution-State NMR Spectroscopy. Magnetic Resonance in Chemistry, 46, 508-517.

[270]   Jiang, N., Pu, Y., Samuel, R. and Ragauskas, A.J. (2009) Perdeuterated Pyridinium Molten salt (Ionic Liquid) for Direct Dissolution and NMR Analysis of Plant Cell Walls. Green Chemistry, 11, 1762-1766.

[271]   Kim, H. and Ralph, J. (2010) Solution-State 2D NMR of Ball-Milled Plant Cell Wall Gels in DMSO-d6/Pyridine-d5. Organic & Biomolecular Chemistry, 8, 576-591.

[272]   Mansfield, S.D., Kim, H., Lu, F. and Ralph, J. (2012) Whole Plant Cell Wall Characterization Using Solution-State 2D NMR. Nature Protocols, 7, 1579-1589.

[273]   Cheng, K., Sorek, H., Zimmermann, H., Wemmer, D.E. and Pauly, M. (2013) Solution-State 2D NMR Spectroscopy of Plant Cell Walls Enabled by a Dimethylsulfoxide-d 6/1-Ethyl-3-Methylimidazolium Acetate Solvent. Analytical Che- mistry, 85, 3213-3221.

[274]   Lupoi, J.S., Singh, S., Simmons, B.A. and Henry, R.J. (2014) Assessment of Lignocellulosic Biomass Using Analytical Spectroscopy: An Evolution to High-Throughput Techniques. BioEnergy Research, 7, 1-23.

[275]   Wen, J.-L., Sun, S.-L., Xue, B.-L. and Sun, R.-C. (2013) Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR) Methodology. Materials, 6, 359-391.

[276]   Pinto, P.C., Evtuguin, D.V. and Pascoal Neto, C. (2005) Chemical Composition and Structural Features of the Macro- molecular Components of Plantation Acacia Mangium Wood. Journal of Agricultural and Food Chemistry, 53, 7856- 7862.

[277]   Yan, J., Hu, Z., Pu, Y., Brummer, E.C. and Ragauskas, A.J. (2010) Chemical Compositions of Four Switchgrass Populations. Biomass and Bioenergy, 34, 48-53.

[278]   Capanema, E.A., Balakshin, M.Y. and Kadla, J.F. (2004) A Comprehensive Approach for Quantitative Lignin Characterization by NMR Spectroscopy. Journal of Agricultural and Food Chemistry, 52, 1850-1860.

[279]   Bunzel, M. and Ralph, J. (2006) NMR Characterization of Lignins Isolated from Fruit and Vegetable Insoluble Dietary Fiber. Journal of Agricultural and Food Chemistry, 54, 8352-8361.

[280]   Jamet, E., Albenne, C., Boudart, G., Irshad, M., Canut, H. and Pont-Lezica, R. (2008) Recent Advances in Plant Cell Wall Proteomics. Proteomics, 8, 893-908.

[281]   Galvani, M., Hamdan, M., Herbert, B. and Righetti, P.G. (2001) Alkylation Kinetics of Proteins in Preparation for Two-Dimensional Maps: A Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Investigation. Electrophoresis, 22, 2058-2065.<2058::AID-ELPS2058>3.0.CO;2-Z

[282]   Mineki, R., Taka, H., Fujimura, T., Kikkawa, M., Shindo, N. and Murayama, K. (2002) In Situ Alkylation with Acrylamide for Identification of Cysteinyl Residues in Proteins during One-and Two-Dimensional Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis. Proteomics, 2, 1672-1681.

[283]   Luche, S., Diemer, H., Tastet, C., Chevallet, M., Van Dorsselaer, A., Leize-Wagner, E., et al. (2004) About Thiol Derivatization and Resolution of Basic Proteins in Two-Dimensional Electrophoresis. Proteomics, 4, 551.

[284]   Olsson, I., Larsson, K., Palmgren, R. and Bjellqvist, B. (2002) Organic Disulfides as a Means to Generate Streak-Free Two-Dimensional Maps with Narrow Range Basic Immobilized pH Gradient Strips as First Dimension. Proteomics, 2, 1630-1632.<1630::AID-PROT1630>3.0.CO;2-N

[285]   Jackson, P. (1990) The Use of Polyacrylamide-Gel Electrophoresis for the High-Resolution Separation of Reducing Saccharides Labelled with the Fluorophore 8-Aminonaphthalene-1, 3, 6-Trisulphonic Acid. Detection of Picomolar Quantities by an Imaging System Based on a Cooled Charge-Coupled Device. Biochemical Journal, 270, 705-713.

[286]   Stack, R.J. and Sullivan, M.T. (1992) Electrophoretic Resolution and Fluorescence Detection of N-Linked Glyco- protein Oligosaccharides after Reductive Amination with 8-Aminonaphthalene-1, 3, 6-Trisulphonic Acid. Glycobio- logy, 2, 85-92.

[287]   Bardor, M., Cabanes-Macheteau, M., Faye, L. and Lerouge, P. (2000) Monitoring the N-Glycosylation of Plant Glyco- proteins by Fluorophore-Assisted Carbohydrate Electrophoresis. Electrophoresis, 21, 2550-2556.<2550::AID-ELPS2550>3.0.CO;2-G

[288]   Mort, A.J. and Chen, E.M.W. (1996) Separation of 8-Aminonaphthalene-1, 3, 6-Trisulfonate (ANTS)-Labeled Oligomers Containing Galacturonic Acid by Capillary Electrophoresis: Application to Determining the Substrate Specificity of Endopolygalacturonases. Electrophoresis, 17, 379-383.

[289]   Goubet, F., Jackson, P., Deery, M.J. and Dupree, P. (2002) Polysaccharide Analysis Using Carbohydrate Gel Electro- phoresis: A Method to Study Plant Cell Wall Polysaccharides and Polysaccharide Hydrolases. Analytical Biochemistry, 300, 53-68.

[290]   Starr, C.M., Masada, R.I., Hague, C., Skop, E. and Klock, J.C. (1996) Fluorophore-Assisted Carbohydrate Electropho- resis in the Separation, Analysis, and Sequencing of Carbohydrates. Journal of Chromatography A, 720, 295-321.

[291]   O’Shea, M.G., Samuel, M.S., Konik, C.M. and Morell, M.K. (1998) Fluorophore-Assisted Carbohydrate Electrophoresis (FACE) of Oligosaccharides: Efficiency of Labelling and High-Resolution Separation. Carbohydrate Research, 307, 1-12.

[292]   Volpi, N., Maccari, F. and Linhardt, R.J. (2008) Capillary Electrophoresis of Complex Natural Polysaccharides. Electrophoresis, 29, 3095-3106.

[293]   Campa, C., Coslovi, A., Flamigni, A. and Rossi, M. (2006) Overview on Advances in Capillary Electrophoresis-Mass Spectrometry of Carbohydrates: A Tabulated Review. Electrophoresis, 27, 2027-2050.

[294]   Amon, S., Zamfir, A.D. and Rizzi, A. (2008) Glycosylation Analysis of Glycoproteins and Proteoglycans Using Capillary Electrophoresis-Mass Spectrometry Strategies. Electrophoresis, 29, 2485-2507.

[295]   Mechref, Y. and Novotny, M.V. (2009) Glycomic Analysis by Capillary Electrophoresis-Mass Spectrometry. Mass Spectrometry Reviews, 28, 207-222.

[296]   Zaia, J. (2013) Capillary Electrophoresis-Mass Spectrometry of Carbohydrates. Capillary Electrophoresis of Biomole- cules, 984, 13-25.

[297]   Masselter, S., Zemann, A. and Bobleter, O. (1995) Analysis of Lignin Degradation Products by Capillary Electrophoresis. Chromatographia, 40, 51-57.

[298]   Bonn, G.K., Pfeifer, P.A., Hormeyer, H. and Bobleter, O. (1984) Analysis of Acidic and Phenolic Biomass Degradation Products by Isotachophoresis. Fresenius’ Zeitschrift Für Analytische Chemie, 318, 30-32.

[299]   Lee, K.J., Jung, J.-H., Lee, J.M., So, Y., Kwon, O., Callewaert, N., et al. (2009) High-Throughput Quantitative Analysis of Plant N-Glycan Using a DNA Sequencer. Biochemical and Biophysical Research Communications, 380, 223-229.

[300]   SOUPI, M., Bourven, I., Simon, S., Lhernould, S., Omokolo, D., Guibaud, G., et al. (2014) SEC Coupled with UV and Fluorescence Detection, an Efficient Method for β-Glucosyl-Yariv Arabinogalactan Protein (AGP) Monitoring. International Journal of Research In Agriculture and Food Science, 2, 5-15.

[301]   Edge, A. (2003) Deglycosylation of Glycoproteins with Trifluoromethanesulphonic Acid: Elucidation of Molecular Structure and Function. Biochemical Journal, 376, 339-350.

[302]   Doco, T., O’neill, M.A. and Pellerin, P. (2001) Determination of the Neutral and Acidic Glycosyl-Residue Composi- tions of Plant Polysaccharides by GC-EI-MS Analysis of the Trimethylsilyl Methyl Glycoside Derivatives. Carbohy- drate Polymers, 46, 249-259.

[303]   Chaplin, M.F. (1982) A Rapid and Sensitive Method for the Analysis of Carbohydrate Components in Glycoproteins Using Gas-Liquid Chromatography. Analytical Biochemistry, 123, 336-341.

[304]   Willfor, S., Pranovich, A., Tamminen, T., Puls, J., Laine, C., Suurnakki, A., et al. (2009) Carbohydrate Analysis of Plant Materials with Uronic Acid-Containing Polysaccharides—A Comparison between Different Hydrolysis and Subsequent Chromatographic Analytical Techniques. Industrial Crops and Products, 29, 571-580.

[305]   Blakeney, A.B., Harris, P.J., Henry, R.J. and Stone, B.A. (1983) A Simple and Rapid Preparation of Alditol Acetates for Monosaccharide Analysis. Carbohydrate Research, 113, 291-299.

[306]   Chambers, R.E. and Clamp, J.R. (1971) An Assessment of Methanolysis and Other Factors Used in the Analysis of Carbohydrate-Containing Materials. Biochemical Journal, 125, 1009-1018.

[307]   Bleton, J., Mejanelle, P., Sansoulet, J., Goursaud, S. and Tchapla, A. (1996) Characterization of Neutral Sugars and Uronic Acids after Methanolysis and Trimethylsilylation for Recognition of Plant Gums. Journal of Chromatography A, 720, 27-49.

[308]   Biermann, C.J. (1989) Introduction to Analysis of Carbohydrates by Gas-Liquid Chromatography (GLC). W: Analysis of Carbohydrates by GLC and MS, Red: Biermann CJ, McGinnis GD CRC Press Inc, Florida, 1-18.

[309]   Englmaier, P. (1989) Carbohydrate Trifiuoroacetates. In: Biermann, C.J. and McGinnis, G.D., Eds., Analysis of Carbohydrates by GLC and MS, CRC Press, Inc., Boca Raton, FL, 127-141.

[310]   Black, G.E. and Fox, A. (1996) Recent Progress in the Analysis of Sugar Monomers from Complex Matrices Using Chromatography in Conjunction with Mass Spectrometry or Stand-Alone Tandem Mass Spectrometry. Journal of Chromatography A, 720, 51-60.

[311]   McGinnis, G.D. and Biermann, C.J. (1989) Analysis of Monosaccharides as Per-O-Acetylated Aldononitrile (PAAN) Derivatives by Gas-Liquid Chromatography (GLC). Analysis of Carbohydrates by GLC and MS, CRC Press, Inc., Boca Raton, Florida, 119-125.

[312]   Neeser, J.-R. and Schweizer, T.F. (1989) Analysis of Carbohydrates as 0-Alkyloxime Derivatives by Gas-Liquid Chromatography (GLC). In: Biermann, C.J. and McGinnis, G.D., Eds., Analysis of Carbohydrates by GLC and MS, CRC Press, Inc., Boca Raton, 143-155.

[313]   Chen, W., Smeekens, J.M. and Wu, R. (2014) Comprehensive Analysis of Protein N-Glycosylation Sites by Combining Chemical Deglycosylation with LC-MS. Journal of Proteome Research, 13, 1466-1473.

[314]   Ruiz-May, E., Thannhauser, T.W., Zhang, S. and Rose, J.K. (2012) Analytical Technologies for Identification and Characterization of the Plant N-Glycoproteome. Frontiers in Plant Science, 3.

[315]   Pauly, M., Albersheim, P., Darvill, A. and York, W.S. (1999) Molecular Domains of the Cellulose/Xyloglucan Network in the Cell Walls of Higher Plants. The Plant Journal, 20, 629-639.

[316]   Zhang, Z., Xiao, Z. and Linhardt, R.J. (2009) Thin Layer Chromatography for the Separation and Analysis of Acidic Carbohydrates. Journal of Liquid Chromatography & Related Technologies, 32, 1711-1732.

[317]   Hartley, R.D. (1971) Improved Methods for the Estimation by Gas-Liquid Chromatography of Lignin Degradation Products from Plants. Journal of Chromatography A, 54, 335-344.

[318]   Hedges, J.I. and Ertel, J.R. (1982) Characterization of Lignin by Gas Capillary Chromatography of Cupric Oxide Oxidation Products. Analytical Chemistry, 54, 174-178.

[319]   Heitner, C., Dimmel, D. and Schmidt, J. (2010) Lignin and Lignans: Advances in Chemistry [Internet]. CRC Press.

[320]   Gidh, A.V., Decker, S.R., Vinzant, T.B., Himmel, M.E. and Williford, C. (2006) Determination of Lignin by Size Exclusion Chromatography Using Multi Angle Laser Light Scattering. Journal of Chromatography A, 1114, 102-110.

[321]   Willats, W.G. and Knox, J.P. (2003) Molecules in Context: Probes for Cell Wall Analysis. In: Rose, J.K.C., Ed., The Plant Cell Wall, Blackwell Publishing/CRC, Oxford, 92-110.

[322]   Moller, I., Marcus, S.E., Haeger, A., Verhertbruggen, Y., Verhoef, R., Schols, H., et al. (2008) High-Throughput Screening of Monoclonal Antibodies against Plant Cell Wall Glycans by Hierarchical Clustering of Their Carbohydrate Microarray Binding Profiles. Glycoconjugate Journal, 25, 37-48.

[323]   Freshour, G., Clay, R.P., Fuller, M.S., Albersheim, P., Darvill, A.G. and Hahn, M.G. (1996) Developmental and Tissue-Specific Structural Alterations of the Cell-Wall Polysaccharides of Arabidopsis thaliana Roots. Plant Physiology, 110, 1413-1429.

[324]   Jones, L., Seymour, G.B. and Knox, J.P. (1997) Localization of Pectic Galactan in Tomato Cell Walls Using a Monoclonal Antibody Specific to (1[->]4)-[Beta]-D-Galactan. Plant Physiology, 113, 1405-1412.

[325]   Willats, W.G., Marcus, S.E. and Knox, J.P. (1998) Generation of a Monoclonal Antibody Specific to (1→ 5)-α-l- Arabinan. Carbohydrate Research, 308, 149-152.

[326]   McCartney, L., Ormerod, A.P., Gidley, M.J. and Knox, J.P. (2000) Temporal and Spatial Regulation of Pectic (1-->4)- Beta-D-Galactan in Cell Walls of Developing Pea Cotyledons: Implications for Mechanical Properties. The Plant Journal: For Cell and Molecular Biology, 22, 105-113.

[327]   Clausen, M.H., Ralet, M.-C., Willats, W.G.T., McCartney, L., Marcus, S.E., Thibault, J.-F., et al. (2004) A Mono-clonal Antibody to Feruloylated-(1-->4)-Beta-D-Galactan. Planta, 219, 1036-1041.

[328]   Altaner, C., Hapca, A.I., Knox, J.P. and Jarvis, M.C. (2007) Detection of β-1-4-Galactan in Compression Wood of Sitka spruce [Picea sitchensis (Bong.) Carrière] by Immunofluorescence. Holzforschung, 61, 311-316.

[329]   Ralet, M.-C., Tranquet, O., Poulain, D., Moise, A. and Guillon, F. (2010) Monoclonal Antibodies to Rhamnogalacturonan I Backbone. Planta, 231, 1373-1383.

[330]   Clausen, M.H., Willats, W.G.T. and Knox, J.P. (2003) Synthetic Methyl Hexagalacturonate Hapten Inhibitors of Anti-Homogalacturonan Monoclonal Antibodies LM7, JIM5 and JIM7. Carbohydrate Research, 338, 1797-1800.

[331]   Willats, W.G., Orfila, C., Limberg, G., Buchholt, H.C., van Alebeek, G.-J.W., Voragen, A.G., et al. (2001) Modulation of the Degree and Pattern of Methyl-Esterification of Pectic Homogalacturonan in Plant Cell Walls Implications for Pectin Methyl Esterase Action, Matrix Properties, and Cell Adhesion. Journal of Biological Chemistry, 276, 19404- 19413.

[332]   Freshour, G., Bonin, C.P., Reiter, W.-D., Albersheim, P., Darvill, A.G. and Hahn, M.G. (2003) Distribution of Fucose-Containing Xyloglucans in Cell Walls of the Mur1 Mutant of Arabidopsis. Plant Physiology, 131, 1602-1612.

[333]   Freshour, G., Clay, R.P., Fuller, M.S., Albersheim, P., Darvill, A.G. and Hahn, M.G. (1996) Developmental and Tissue-Specific Structural Alterations of the Cell-Wall Polysaccharides of Arabidopsis thaliana Roots. Plant Physiology, 110, 1413-1429.

[334]   Marcus, S.E., Verhertbruggen, Y., Hervé, C., Ordaz-Ortiz, J.J., Farkas, V., Pedersen, H.L., et al. (2008) Pectic Homo- galacturonan Masks Abundant Sets of Xyloglucan Epitopes in Plant Cell Walls. BMC Plant Biology, 8, 60.

[335]   Willats, W.G., McCartney, L., Steele-King, C.G., Marcus, S.E., Mort, A., Huisman, M., et al. (2004) A Xylogalacturonan Epitope Is Specifically Associated with Plant Cell Detachment. Planta, 218, 673-681.

[336]   McCartney, L. (2005) Monoclonal Antibodies to Plant Cell Wall Xylans and Arabinoxylans. Journal of Histochemistry and Cytochemistry, 53, 543-546.

[337]   Dolan, L., Linstead, P. and Roberts, K. (1995) An AGP Epitope Distinguishes a Central Metaxylem Initial from Other Vascular Initials in the Arabidopsis Root. Protoplasma, 189, 149-155.

[338]   Pennell, R.I., Janniche, L., Kjellbom, P., Scofield, G.N., Peart, J.M. and Roberts, K. (1991) Developmental Regulation of a Plasma Membrane Arabinogalactan Protein Epitope in Oilseed Rape Flowers. The Plant Cell Online, 3, 1317- 13126.

[339]   Puhlmann, J., Bucheli, E., Swain, M.J., Dunning, N., Albersheim, P., Darvill, A.G., et al. (1994) Generation of Monoclonal Antibodies against Plant Cell-Wall Polysaccharides (I. Characterization of a Monoclonal Antibody to a Terminal [alpha]-(1->2)-Linked Fucosyl-Containing Epitope. Plant Physiology, 104, 699-710.

[340]   Smallwood, M., Yates, E.A., Willats, W.G.T., Martin, H. and Knox, J.P. (1996) Immunochemical Comparison of Membrane-Associated and Secreted Arabinogalactan-Proteins in Rice and Carrot. Planta, 198, 452-459.

[341]   Smallwood, M., Martin, H. and Knox, J.P. (1995) An Epitope of Rice Threonine- and Hydroxyproline-Rich Glycoprotein Is Common to Cell Wall and Hydrophobic Plasma-Membrane Glycoproteins. Planta, 196, 510-522.

[342]   Pattathil, S., Avci, U., Baldwin, D., Swennes, A.G., McGill, J.A., Popper, Z., et al. (2010) A Comprehensive Toolkit of Plant Cell Wall Glycan-Directed Monoclonal Antibodies. Plant Physiology, 153, 514-525.

[343]   Pennell, R.I. and Roberts, K. (1995) Chapter 9 Monoclonal Antibodies to Cell-Specific Cell Surface Carbohydrates in Plant Cell Biology and Development. Methods in Cell Biology, 49, 123-141.

[344]   Boraston, A.B., Bolam, D., Gilbert, H. and Davies, G. (2004) Carbohydrate-Binding Modules: Fine-Tuning Polysaccharide Recognition. Biochemical Journal, 382, 769-781.

[345]   Hilden, L. and Johansson, G. (2004) Recent Developments on Cellulases and Carbohydrate-Binding Modules with Cellulose Affinity. Biotechnology Letters, 26, 1683-1693.

[346]   Shoseyov, O., Shani, Z. and Levy, I. (2006) Carbohydrate Binding Modules: Biochemical Properties and Novel Applications. Microbiology and Molecular Biology Reviews, 70, 283-295.

[347]   Blake, A.W., McCartney, L., Flint, J.E., Bolam, D.N., Boraston, A.B., Gilbert, H.J., et al. (2006) Understanding the Biological Rationale for the Diversity of Cellulose-Directed Carbohydrate-Binding Modules in Prokaryotic Enzymes. Journal of Biological Chemistry, 281, 29321-29329.

[348]   Ding, S., Xu, Q., Ali, M.K., Baker, J.O., Bayer, E.A., Barak, Y., et al. (2006) Versatile Derivatives of Carbohydrate- Binding Modules for Imaging of Complex Carbohydrates Approaching the Molecular Level of Resolution. Biotechniques, 41, 435.

[349]   Hildén, L., Daniel, G. and Johansson, G. (2003) Use of a Fluorescence Labelled, Carbohydrate-Binding Module from Phanerochaete chrysosporium Cel7D for Studying Wood Cell Wall Ultrastructure. Biotechnology Letters, 25, 553-558.

[350]   McCartney, L., Blake, A.W., Flint, J., Bolam, D.N., Boraston, A.B., Gilbert, H.J., et al. (2006) Differential Recog nition of Plant Cell Walls by Microbial Xylan-Specific Carbohydrate-Binding Modules. Proceedings of the National Academy of Sciences of the United States of America, 103, 4765-4770.

[351]   Filonova, L., Kallas, A.M., Greffe, L., Johansson, G., Teeri, T.T. and Daniel, G. (2007) Analysis of the Surfaces of Wood Tissues and Pulp Fibers Using Carbohydrate-Binding Modules Specific for Crystalline Cellulose and Mannan. Biomacromolecules, 8, 91-97.

[352]   McCartney, L., Gilbert, H.J., Bolam, D.N., Boraston, A.B. and Knox, J.P. (2004) Glycoside Hydrolase Carbohydrate- Binding Modules as Molecular Probes for the Analysis of Plant Cell Wall Polymers. Analytical Biochemistry, 326, 49- 54.

[353]   McCartney, L., Gilbert, H.J., Bolam, D.N., Boraston, A.B. and Knox, J.P. (2004) Glycoside Hydrolase Carbohydrate- Binding Modules as Molecular Probes for the Analysis of Plant Cell Wall Polymers. Analytical Biochemistry, 326, 49-54.

[354]   Knox, J.P. (2008) Revealing the Structural and Functional Diversity of Plant Cell Walls. Current Opinion in Plant Biology, 11, 308-313.

[355]   Willats, W.G., Marcus, S.E. and Knox, J.P. (1998) Generation of a Monoclonal Antibody Specific to (1→ 5)-α-l-Arabinan. Carbohydrate Research, 308, 149-152.

[356]   Tang, P.W., Gool, H.C., Hardy, M., Lee, Y.C. and Felzi, T. (1985) Novel Approach to the Study of the Antigenicities and Receptor Functions of Carbohydrate Chains of Glycoproteins. Biochemical and Biophysical Research Communications, 132, 474-480.

[357]   Obel, N., Erben, V., Schwarz, T., Kühnel, S., Fodor, A. and Pauly, M. (2009) Microanalysis of Plant Cell Wall Polysaccharides. Molecular Plant, 2, 922-932.

[358]   Moller, I., Sorensen, I., Bernal, A.J., Blaukopf, C., Lee, K., Obro, J., et al. (2007) High-Throughput Mapping of Cell-Wall Polymers within and between Plants Using Novel Microarrays: Glycan Microarrays for Plant Cell-Wall Analysis. The Plant Journal, 50, 1118-1128.

[359]   Plazanet, I., Zerrouki, R., Lhernould, S., Breton, C. and Costa, G. (2015) Direct Immunological Detection of Wood Cell Wall Polysaccharides after Microwave-Assisted Ionic Liquid Disruption. Glycobiology Journals, 4, 2.

[360]   Czaja, A.T. (1934) Untersuchungen über metachromatische Firbungen von Pflanzengeweben. Planta, 21, 531-601.

[361]   Tolivia, D. and Tolivia, J. (1987) Fasga: A New Polychromatic Method for Simultaneous and Differential Staining of Plant Tissues. Journal of Microscopy, 148, 113-117.

[362]   Wiesner, J. (1878) Note fiber das Verhalten des Phloroglucins und einiger verwandter K6rper zur verholzten Zellmembran. Sitzungsber Math Naturwiss CI Akad Wiss Wien, 77, 60-66.

[363]   Maule, C. (1901) Das verhalten verholzter membranen gegen kaliumpermanganat, eine holzreaktion neuer art. A. Zimmer’s Verlag (Ernst Mohrmann).

[364]   Bond, J., Donaldson, L., Hill, S. and Hitchcock, K. (2008) Safranine Fluorescent Staining of Wood Cell Walls. Bio- technic & Histochemistry, 83, 161-171.

[365]   Donaldson, L.A. (2002) Abnormal Lignin Distribution in Wood from Severely Drought Stressed Pinus radiata trees. IAWA JL (NS), 23, 161-178.

[366]   Donaldson, L.A. and Bond, J. (2005) Fluorescence Microscopy of Wood. New Zealand Forest Research Institute [CD ROM], Rotorua.

[367]   Brundrett, M.C., Enstone, D.E. and Peterson, C.A. (1988) A Berberine-Aniline Blue Fluorescent Staining Procedure for Suberin, Lignin, and Callose in Plant Tissue. Protoplasma, 146, 133-142.

[368]   Castellan, A., Trichet, V., Pommier, J.-C., Siohan, A. and Armagnacq, S. (1995) Photo and Thermal Stability of To- tally Chlorine Free Softwood Pulps Studied by UV/V Is Diffuse Reflectance and Fluorescence Spectroscopy. Journal of Pulp and Paper Science, 21, J291–6.

[369]   Olmstead, J.A. and Gray, D.G. (1997) Fluorescence Spectroscopy of Cellulose, Lignin and Mechanical Pulps: A Review. Journal of Pulp and Paper Science, 23, J571-J581.

[370]   Anderson, C.T., Carroll, A., Akhmetova, L. and Somerville, C. (2010) Real-Time Imaging of Cellulose Reorientation during Cell Wall Expansion in Arabidopsis Roots. Plant Physiology, 152, 787-796.

[371]   Anderson, C.T. and Carroll, A. (2014) Identification and Use of Fluorescent Dyes for Plant Cell Wall Imaging Using High-Throughput Screening. Plant Chemical Genomics, 1056, 103-109.

[372]   Hoch, H.C., Galvani, C.D., Szarowski, D.H. and Turner, J.N. (2005) Two New Fluorescent Dyes Applicable for Visualization of Fungal Cell Walls. Mycologia, 97, 580-588.

[373]   Knox, J.P. (1992) Molecular Probes for the Plant Cell Surface. Protoplasma, 167, 1-9.

[374]   Knox, J.P. (2008) Revealing the Structural and Functional Diversity of Plant Cell Walls. Current Opinion in Plant Biology, 11, 308-313.

[375]   Willats, W.G., Steele-King, C.G., McCartney, L., Orfila, C., Marcus, S.E. and Knox, J.P. (2000) Making and Using Antibody Probes to Study Plant Cell Walls. Plant Physiology and Biochemistry, 38, 27-36.

[376]   Boraston, A.B., Bolam, D., Gilbert, H. and Davies, G. (2004) Carbohydrate-Binding Modules: Fine-Tuning Polysaccharide Recognition. Biochemical Journal, 382, 769-781.

[377]   Donaldson, L.A. and Knox, J.P. (2012) Localization of Cell Wall Polysaccharides in Normal and Compression Wood of Radiata Pine: Relationships with Lignification and Microfibril Orientation. Plant Physiology, 158, 642-653.

[378]   Hepler, P.K. and Gunning, B.E. (1998) Confocal Fluorescence Microscopy of Plant Cells. Protoplasma, 201, 121-157.

[379]   Schwille, P., Haupts, U., Maiti, S. and Webb, W.W. (1999) Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with One- and Two-Photon Excitation. Biophysical Journal, 77, 2251-2265.

[380]   Blancaflor, E.B. and Gilroy, S. (2000) Plant Cell Biology in the New Millennium: New Tools and New Insights. American Journal of Botany, 87, 1547-1560.

[381]   Fricker, M.D. and Meyer, A.J. (2001) Confocal Imaging of Metabolism in Vivo: Pitfalls and Possibilities. Journal of Experimental Botany, 52, 631-640.

[382]   Feijó, J.A. and Moreno, N. (2004) Imaging Plant Cells by Two-Photon Excitation. Protoplasma, 223, 1-32.

[383]   Tirlapur, U.K. and Konig, K. (1999) Near-Infrared Femtosecond Laser Pulses as a Novel Non-Invasive Means for Dye-Permeation and 3D Imaging of Localised Dye-Coupling in the Arabidopsis Root Meristem. The Plant Journal, 20, 363-370.

[384]   Squirrell, J.M., Wokosin, D.L., White, J.G. and Bavister, B.D. (1999) Long-Term Two-Photon Fluorescence Imaging of Mammalian Embryos without Compromising Viability. Nature Biotechnology, 17, 763-767.

[385]   Tirlapur, U.K. and Konig, K. (2001) Femtosecond Near-Infrared Lasers as a Novel Tool for Non-Invasive Real-Time High-Resolution Time-Lapse Imaging of Chloroplast Division in Living Bundle Sheath Cells of Arabidopsis. Planta, 214, 1-10.

[386]   Tirlapur, U.K. and Konig, K. (2002) Femtosecond Near-Infrared Laser Pulses as a Versatile Non-Invasive Tool for Intra-Tissue Nanoprocessing in Plants without Compromising Viability. The Plant Journal, 31, 365-374.

[387]   Moreno, N., Bougourd, S., Haseloff, J. and Feijó, J.A. (2006) Imaging Plant Cells. Handbook of Biological Confocal Microscopy, 166, 769-787.

[388]   Schuetz, M., Benske, A., Smith, R.A., Watanabe, Y., Tobimatsu, Y., Ralph, J., et al. (2014) Laccases Direct Ligni- fication in the Discrete Secondary Cell Wall Domains of Protoxylem. Plant Physiology, 166, 798-807.

[389]   Sosinsky, G.E., Crum, J., Jones, Y.Z., Lanman, J., Smarr, B., Terada, M., et al. (2008) The Combination of Chemical Fixation Procedures with High Pressure Freezing and Freeze Substitution Preserves Highly Labile Tissue Ultra-structure for Electron Tomography Applications. Journal of Structural Biology, 161, 359-371.

[390]   Griffith, P.R. and De Haseth, J.A. (1986) Fourier Transform Infrared Spectroscopy. Chem Anal Ser Monogr Anal Chem Appl, 83.

[391]   McCann, M.C., Hammouri, M., Wilson, R., Belton, P. and Roberts, K. (1992) Fourier Transform Infrared Micro-spectroscopy Is a New Way to Look at Plant Cell Walls. Plant Physiology, 100, 1940-1947.

[392]   Himmelsbach, D.S. and Akin, D.E. (1998) Near-Infrared Fourier-Transform Raman Spectroscopy of Flax (Linum usitatissimum L.) Stems. Journal of Agricultural and Food Chemistry, 46, 991-998.

[393]   Himmelsbach, D.S., Khalili, S. and Akin, D.E. (2002) The Use of FT-IR Microspectroscopic Mapping to Study the Effects of Enzymatic Retting of Flax (Linum usitatissimum L) Stems. Journal of the Science of Food and Agriculture, 82, 685-696.

[394]   Labbe, N., Rials, T.G., Kelley, S.S., Cheng, Z.-M., Kim, J.-Y. and Li, Y. (2005) FT-IR Imaging and Pyrolysis-Molecular Beam Mass Spectrometry: New Tools to Investigate Wood Tissues. Wood Science and Technology, 39, 61-76.

[395]   Gierlinger, N., Sapei, L. and Paris, O. (2008) Insights into the Chemical Composition of Equisetum hyemale by High Resolution Raman Imaging. Planta, 227, 969-980.

[396]   Yin, C.-Y. and Goh, B.-M. (2011) Thermal Degradation of Rice Husks in Air and Nitrogen: Thermogravimetric and Kinetic Analyses. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 34, 246-252.

[397]   Gou, J.-Y., Park, S., Yu, X.-H., Miller, L.M. and Liu, C.-J. (2008) Compositional Characterization and Imaging of “Wall-Bound” Acylesters of Populus trichocarpa Reveal Differential Accumulation of Acyl Molecules in Normal and Reactive Woods. Planta, 229, 15-24.

[398]   Chang, S., Salmén, L., Olsson, A.-M. and Clair, B. (2014) Deposition and Organization of Cell Wall Polymers during Tension Wood Cell Wall Maturation Studied by FTIR Microspectroscopy. Planta, 239, 243-254.

[399]   Ji, Z., Ding, D., Ling, Z., Zhang, X., Zhou, X. and Xu, F. (2014) In Situ Microscopic Investigation of Plant Cell Walls Deconstruction in Biorefinery. In: Mendez-Vilas, A.., Ed., Microscopy: Advances in Scientific Research and Education, Formatex Research Center, Spain, 426-433.

[400]   Gierlinger, N., Luss, S., Konig, C., Konnerth, J., Eder, M. and Fratzl, P. (2010) Cellulose Microfibril Orientation of Picea abies and Its Variability at the Micron-Level Determined by Raman Imaging. Journal of Experimental Botany, 61, 587-595.

[401]   Schmidt, M., Schwartzberg, A.M., Carroll, A., Chaibang, A., Adams, P.D. and Schuck, P.J. (2010) Raman imaging of cell wall polymers in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 395, 521–3.

[402]   Agarwal, U.P. (2006) Raman Imaging to Investigate Ultrastructure and Composition of Plant Cell Walls: Distribution of lignin and Cellulose in Black Spruce Wood (Picea mariana). Planta, 224, 1141-1153.

[403]   Schmidt, M., Schwartzberg, A.M., Perera, P.N., Weber-Bargioni, A., Carroll, A., Sarkar, P., et al. (2009) Label-Free in Situ Imaging of Lignification in the Cell Wall of Low Lignin Transgenic Populus trichocarpa. Planta, 230, 589-597.

[404]   Zhang, Z., Ma, J., Ji, Z. and Xu, F. (2012) Comparison of Anatomy and Composition Distribution between Normal and Compression Wood of Pinus bungeana zucc. Revealed by Microscopic Imaging Techniques. Microscopy and Micro-analysis, 18, 1459-1466.

[405]   Chu, L.-Q., Masyuko, R., Sweedler, J.V. and Bohn, P.W. (2010) Base-Induced Delignification of Miscanthus x Giganteus Studied by Three-Dimensional Confocal Raman Imaging. Bioresource Technology, 101, 4919-4925.

[406]   Zhang, X., Ma, J., Ji, Z., Yang, G.-H., Zhou, X. and Xu, F. (2014) Using Confocal Raman Microscopy to Real-Time Monitor Poplar Cell Wall Swelling and Dissolution during Ionic Liquid Pretreatment. Microscopy Research and Technique, 77, 609-618.

[407]   Evans, C.L. and Xie, X.S. (2008) Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine. Annual Review of Analytical Chemistry, 1, 883-909.

[408]   Chandra, S., Smith, D.R. and Morrison, G.H. (2000) Peer Reviewed: A Subcellular Imaging by Dynamic SIMS Ion Microscopy. Analytical Chemistry, 72, 104-114.

[409]   Guerquin-Kern, J.-L., Wu, T.-D., Quintana, C. and Croisy, A. (2005) Progress in Analytical Imaging of the Cell by Dynamic Secondary Ion Mass Spectrometry (SIMS Microscopy). Biochimica et Biophysica Acta (BBA)-General Subjects, 1724, 228-238.

[410]   Smart, K.E., Smith, J.A.C., Kilburn, M.R., Martin, B.G., Hawes, C. and Grovenor, C.R. (2010) High-Resolution Elemental Localization in Vacuolate Plant Cells by Nanoscale Secondary ion Mass Spectrometry. The Plant Journal, 63, 870-879.

[411]   Moore, K.L., Schroder, M., Wu, Z., Martin, B.G., Hawes, C.R., McGrath, S.P., et al. (2011) High-Resolution Secondary ion Mass Spectrometry Reveals the Contrasting Subcellular Distribution of Arsenic and Silicon in Rice Roots. Plant Physiology, 156, 913-924.

[412]   Boughton, B.A., Thinagaran, D., Sarabia, D., Bacic, A. and Roessner, U. (2015) Mass Spectrometry Imaging for Plant Biology: A Review. Phytochemistry Reviews, 15, 1-44.

[413]   Tokareva, E.N., Pranovich, A.V. and Holmbom, B.R. (2011) Characteristic Fragment Ions from Lignin and Polysaccharides in ToF-SIMS. Wood Science and Technology, 45, 767-785.

[414]   Saito, K., Mitsutani, T., Imai, T., Matsushita, Y., Yamamoto, A. and Fukushima, K. (2008) Chemical Differences between Sapwood and Heartwood of Chamaecyparis obtusa Detected by ToF-SIMS. Applied Surface Science, 255, 1088-1091.

[415]   Araújo, P., Ferreira, M.S., de Oliveira, D.N., Pereira, L., Sawaya, A.C.H.F., Catharino, R.R., et al. (2014) Mass Spectrometry Imaging: An Expeditious and Powerful Technique for Fast in Situ Lignin Assessment in Eucalyptus. Analytical Chemistry, 86, 3415-3419.

[416]   Imai, T., Tanabe, K., Kato, T. and Fukushima, K. (2005) Localization of Ferruginol, a Diterpene Phenol, in Cryptomeria japonica Heartwood by Time-of-Flight Secondary Ion Mass Spectrometry. Planta, 221, 549-556.

[417]   Kuroda, K., Fujiwara, T., Hashida, K., Imai, T., Kushi, M., Saito, K., et al. (2014) The Accumulation Pattern of Ferruginol in the Heartwood-Forming Cryptomeria japonica Xylem as Determined by Time-of-Flight Secondary Ion Mass Spectrometry and Quantity Analysis. Annals of Botany, 113, 1029-1036.

[418]   Lunsford, K.A., Peter, G.F. and Yost, R.A. (2011) Direct Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging of Cellulose and Hemicellulose in Populus Tissue. Analytical Chemistry, 83, 6722-6730.

[419]   Jarvis, M.C. and Apperley, D.C. (1990) Direct Observation of Cell Wall Structure in Living Plant Tissues by Solid-State 13C NMR Spectroscopy. Plant Physiology, 92, 61-65.

[420]   Fenwick, K.M., Jarvis, M.C. and Apperley, D.C. (1997) Estimation of Polymer Rigidity in Cell Walls of Growing and Nongrowing Celery Collenchyma by Solid-State Nuclear Magnetic Resonance in Vivo. Plant Physiology, 115, 587- 592.

[421]   Bals, S., Van Aert, S. and Van Tendeloo, G. (2013) High Resolution Electron Tomography. Current Opinion in Solid State and Materials Science, 17, 107-114.

[422]   Otegui, M.S., Mastronarde, D.N., Kang, B.-H., Bednarek, S.Y. and Staehelin, L.A. (2001) Three-Dimensional Analysis of Syncytial-Type Cell Plates during Endosperm Cellularization Visualized by High Resolution Electron Tomography. The Plant Cell, 13, 2033-2051.

[423]   Doblin, M.S., Pettolino, F. and Bacic, A. (2010) Evans Review: Plant Cell Walls: The Skeleton of the Plant World. Functional Plant Biology, 37, 357-381.

[424]   Pabst, M., Fischl, R.M., Brecker, L., Morelle, W., Fauland, A., Kofeler, H., et al. (2013) Rhamnogalacturonan II Structure Shows Variation in the Side Chains Monosaccharide Composition and Methylation Status within and across Different Plant Species. The Plant Journal, 76, 61-72.